
www.manaraa.com

University of South Florida University of South Florida

Scholar Commons Scholar Commons

Graduate Theses and Dissertations Graduate School

8-31-2010

Architecture and Compiler Support for Leakage Reduction Using Architecture and Compiler Support for Leakage Reduction Using

Power Gating in Microprocessors Power Gating in Microprocessors

Soumyaroop Roy
University of South Florida

Follow this and additional works at: https://scholarcommons.usf.edu/etd

 Part of the American Studies Commons, Computer Engineering Commons, and the Computer

Sciences Commons

Scholar Commons Citation Scholar Commons Citation
Roy, Soumyaroop, "Architecture and Compiler Support for Leakage Reduction Using Power Gating in
Microprocessors" (2010). Graduate Theses and Dissertations.
https://scholarcommons.usf.edu/etd/3479

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has
been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar
Commons. For more information, please contact scholarcommons@usf.edu.

http://scholarcommons.usf.edu/
http://scholarcommons.usf.edu/
https://scholarcommons.usf.edu/
https://scholarcommons.usf.edu/etd
https://scholarcommons.usf.edu/grad
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F3479&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F3479&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.usf.edu%2Fetd%2F3479&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.usf.edu%2Fetd%2F3479&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.usf.edu%2Fetd%2F3479&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

www.manaraa.com

Architecture and Compiler Support for Leakage Reduction Using Power Gating in Microprocessors

by

Soumyaroop Roy

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Computer Science and Engineering

College of Engineering
University of South Florida

Co-Major Professor: Nagarajan Ranganathan, Ph.D.
Co-Major Professor: Srinivas Katkoori, Ph.D.

Hao Zheng, Ph.D.
Sanjukta Bhanja, Ph.D.
Natasha Jonoska, Ph.D.

Date of Approval:
June 8, 2010

Keywords: Compiler Directed Power Gating, Microarchitectural Techniques, Embedded
Microprocessors, Multithreading, Multiprocessing, Multicore, Niagara, CGMT, FGMT, SMT,

GCC, SUIF, MachineSUIF, M5

Copyright © 2010, Soumyaroop Roy

www.manaraa.com

DEDICATION

To my family:

Parents, Alpana and Snehansu, and sister, Shreya

www.manaraa.com

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my doctoral advisors Dr. Nagarajan Ranganathan

and Dr. Srinivas Katkoori for their valuable guidance and support throughout my graduate school

life. I would particularly like to thank them for their patience and belief in me and my work. Their

knowledge, work ethics, and the professional standards they adhere to have been very intrumental

in inspiring me to put my heart and mind into solving the problems that are presented in this disser-

ation. I would also like to thank Dr. Hao Zheng, Dr. Sanjukta Bhanja, and Dr. Natasha Jonoska for

taking the time to be in my doctoral committee and providing valuable suggestions to improve this

manuscript. I am extemely grateful to the CSE department for providing me financial assistance

throughout all my years. I would like to thank Dr. Rangachar Kasturi, Dr. Larry Hall, Dr. Ken

Christensen, Dr. Sudeep Sarkar, Dr. Dmitry Goldgof, Dr. Rafael Perez, Yvette Blanchard, Alex

Dashner, Theresa Collins, Catherine Burton, and others for all their help and support and making

my stay at USF a remarkable and unforgettable experience. I would also like to thank my past and

present colleagues at Computer Architecture and Nano VLSI Systems (CANS) Research Group,

Himanshu, Koustav, Upavan, Ransford, Mahalingam, Ziad, Michael, Saurabh, Yue, Vidyasangkar,

Elizabeth, Haiqiong, Sameer, Pradeep, Hari, Vyas, Jared, Narendra, and others for a fun and intel-

lectually stimluating atmosphere in the labs. I would also like to thank other colleagues in the CSE

department and friends, Sergiy, Matt, Kurt, Olya, Satrajit, Ravi, Anand, Vladimir, Pedro, Miguel,

Daladier, Puneet, Noelia, Jessica, Jason, Erin, Tatiana, Vaso, Neil, Sara, Keri, and others. I am

also very grateful to the efficient CSE tech support team, Daniel, Peter, Sridhar, and Brian and the

engineering computing team for their help with IT related problems. I would also like to thank

Korey Sewell of M5, Glenn Holloway of MachineSUIF, and members of the processor architecture

laboratory, EPFL. Finally, I would like to thank my mother, Alpana, father, Snehansu, and sister,

Shreya, for playing an extremely important part in making me the person that I am today. They

provided me their unconditional love and support in my decision to travel several thousand miles

westward from home for my doctoral studies and throughout my studies. I am also very thankful to

my cousin, Saurabh, for being a beacon of brilliance since we were very young.

www.manaraa.com

TABLE OF CONTENTS

LIST OF TABLES iv

LIST OF FIGURES vi

ABSTRACT x

CHAPTER 1 INTRODUCTION 1
1.1 Power and Energy Concern in Computing Systems 1
1.2 Power Consumption in Digital CMOS Circuits 3
1.3 Motivation for this Dissertation 5
1.4 Contributions of this Dissertation 5
1.5 Outline of Dissertation 7

CHAPTER 2 BACKGROUND AND RELATED WORK 9
2.1 Subthreshold Leakage Reduction Techniques 9
2.2 Power Gating 11

2.2.1 Performance Aspects of Power Gating 13
2.3 Pipelined Microprocessors 13

2.3.1 Pipelining Basics 14
2.3.2 Classification of Instruction Types 14
2.3.3 In-Order Processors 16

2.4 Hardware Multithreading 18
2.5 Related Work 20

2.5.1 Context and Significance of this Dissertation 23

CHAPTER 3 A FRAMEWORK FOR POWER GATING FUNCTIONAL UNITS IN EM-
BEDDED MICROPROCESSORS 24

3.1 Power Gating in Microprocessors 25
3.2 Proposed Framework for Leakage Reduction Using Power-Gating 26

3.2.1 Hardware Component 27
3.2.1.1 Embedded Processor Architecture with Power-

Gating Support 27
3.2.1.2 Design of Power-Gated Functional Units 30

3.2.2 Software Component 31
3.2.2.1 Identifying Potential Power-Gating Regions in

the CFG 33
3.2.2.2 Subgraphs Enclosed Within Loops 35
3.2.2.3 Insertion of Sleep Instructions 38

i

www.manaraa.com

3.2.2.4 Time Complexity 40
3.3 Experimental Setup and Results 41

3.3.1 Energy Component Calculations 41
3.3.2 Cycle-Accurate Simulation 44

3.4 Discussion 47

CHAPTER 4 IMPACT OF COMPILER OPTIMIZATIONS ON POWER GATING 48
4.1 Motivation 49
4.2 Impact of Compiler Optimizations on Power Gating 51

4.2.1 Intraprocedural Optimizations 51
4.2.1.1 Dominator Optimizations 51
4.2.1.2 Loop Optimizations 54
4.2.1.3 Machine Dependent Optimizations 54

4.2.2 Interprocedural Optimizations 56
4.3 Compiler-Directed Power Gating 58

4.3.1 Architecture Support for Power Gating 61
4.3.2 Insertion of Sleep Instructions 63
4.3.3 Policies for Handling C Standard Library Routines 67
4.3.4 Proposed Leakage Aware Compilation Flow 67

4.4 Experimental Setup and Results 70
4.4.1 Optimization Configurations 71
4.4.2 Results 72

4.4.2.1 Susan Benchmarks 73
4.4.2.2 Epwic Benchmarks 76
4.4.2.3 Mpeg2 Benchmarks 78

4.4.3 Impact of Policies for Handling Standard Library Routines 79
4.5 Conclusions 81

CHAPTER 5 STATE-RETENTIVE POWER GATING OF REGISTER FILES IN MULTI-
CORES 83

5.1 Motivation 84
5.2 Register File Power Gating in CGMT Processors 87

5.2.1 Power Gating Control During Fetch Miss 88
5.2.2 Power Gating Control During Load Misses 91

5.3 Register File Power Gating in FGMT Processors 93
5.3.1 Power Gating Control During Fetch Miss 94
5.3.2 Power Gating Control During Load Miss 95

5.4 Register File Power Gating in SMT Processors 97
5.5 Summary of the Proposed Techniques 98
5.6 Experimental Setup and Results 101

5.6.1 Integer Register File Characterization 101
5.6.2 Processor Configurations and Workload Details 101
5.6.3 Results 105

5.7 Discussion 107

CHAPTER 6 CONCLUSIONS AND FUTURE DIRECTIONS 112

ii

www.manaraa.com

REFERENCES 114

LIST OF PUBLICATIONS 121

ABOUT THE AUTHOR End Page

iii

www.manaraa.com

LIST OF TABLES

Table 2.1 Specification of ALU instruction type 16

Table 2.2 Specification of memory or load/store instruction type 16

Table 2.3 Specification of branch instruction type 17

Table 3.1 Latencies of functional units 31

Table 3.2 Average energy components of functional units 43

Table 3.3 ARM processor configuration 44

Table 3.4 Benchmark details 45

Table 4.1 Description of the legends in Figure 4.1 49

Table 4.2 Procedure inlining parameters 69

Table 4.3 Benchmark details 71

Table 4.4 Optimization configurations 71

Table 4.5 Description of metrics 72

Table 5.1 A summary of the proposed techniques 99

Table 5.2 Register file leakage states 101

Table 5.3 SPEC 2000 integer benchmarks 102

Table 5.4 Multi-core processor parameters 103

iv

www.manaraa.com

Table 5.5 Memory access latencies 103

Table 5.6 L1 D-cache and I-cache parameters 104

Table 5.7 L2 cache size (in MB) 104

Table 5.8 L2 cache set associativity 104

Table 5.9 L2 cache MSHR count 104

v

www.manaraa.com

LIST OF FIGURES

Figure 1.1 Components of power consumption in digital CMOS circuits 4

Figure 1.2 Contributions of this dissertation 6

Figure 2.1 Subthreshold leakage reduction approaches 10

Figure 2.2 Power gating options 12

Figure 2.3 The GENERIC (GNR) pipeline 15

Figure 2.4 Scalar vs. superscalar pipeline 17

Figure 2.5 Multithreading approaches 19

Figure 2.6 Taxonomy of works on leakage reduction in microprocessors 22

Figure 3.1 Proposed framework for power gating 27

Figure 3.2 Modified ARM architecture 28

Figure 3.3 Example of activation and deactivation of functional units 29

Figure 3.4 A possible format of the sleep instruction 30

Figure 3.5 A sample piece of code and its CFG 32

Figure 3.6 LHT for CFG in Figure 3.5 35

Figure 3.7 Superimposed voltage and power graphs as functions of time 41

Figure 3.8 Total leakage energy savings in integer benchmarks 45

vi

www.manaraa.com

Figure 3.9 Total leakage energy savings in floating point benchmarks 46

Figure 3.10 Fraction of total simulation cycles for which the integer units were

power gated 46

Figure 3.11 Fraction of total simulation cycles for which the floating point units

were power gated 47

Figure 4.1 Impact of a few compiler optimizations on power gating 50

Figure 4.2 Example to illustrate the impact of global common subexpression

elimination on the usage of functional units 52

Figure 4.3 Example to illustrate the impact of partial redundancy elimination

on the usage of functional units 53

Figure 4.4 Examples of loop optimizations that improve the opportunities for

power gating 55

Figure 4.5 Examples of machine dependent optimizations in ARM that can im-

prove opportunities for power gating 56

Figure 4.6 Example illustrating the impact of interprocedural optimizations on

power gating opportunities of the integer multiplier 57

Figure 4.7 Framework for compiler-directed power gating of functional units

with code optimizations 59

Figure 4.8 GCC Compiler Pipeline 60

Figure 4.9 Gate level schematic of the Sleep Control Register (SCR) 62

Figure 4.10 Assembly and machine code formats of the sleep instruction 63

Figure 4.11 Components of a loop 64

vii

www.manaraa.com

Figure 4.12 Proposed compilation flow to generate leakage optimized code with

compiler-directed power gating 68

Figure 4.13 Leakage savings and sleep overhead for SusanE 74

Figure 4.14 Leakage savings and sleep overhead for SusanC 75

Figure 4.15 Impact of weak strength reduction on leakage savings of the integer

multiplier for SusanC 76

Figure 4.16 Leakage savings and sleep overhead for Epwic 77

Figure 4.17 Leakage savings and sleep overhead for Mpeg2Encode 78

Figure 4.18 Impact of various policies for handling the standard library routines

during insertion of sleep instructions 80

Figure 5.1 Schematic view of the proposed approach for power gating register

files in in-order cores that support multithreading 85

Figure 5.2 Intermediate strength power gating applied during a cache miss 87

Figure 5.3 Timing details for putting register files to sleep following an instruc-

tion fetch miss 89

Figure 5.4 Wake-up details of T1’s register file if the pipeline is busy when its

fetch miss completes 90

Figure 5.5 Wake-up details of T1’s register file if the pipeline is idle after its

fetch miss completes 91

Figure 5.6 Timing details for putting a register file to sleep following a data

load miss 92

viii

www.manaraa.com

Figure 5.7 Timing details for waking up T1’s register file from sleep after its

load miss completes and it gets ready to run 94

Figure 5.8 Timing details for putting a thread’s register file in and out of low-

leakage state following a fetch miss in FGMT 95

Figure 5.9 Timing details for putting a thread’s register file in and out of low-

leakage state following a data miss in FGMT 96

Figure 5.10 Schematic view of a pipeline organization to support SMT in in-

order cores 97

Figure 5.11 A pathological case during a fetch miss in an FGMT core 100

Figure 5.12 Average instructions per cycle (IPC) count for CGMT approach 106

Figure 5.13 Average instructions per cycle (IPC) count for FGMT approach 107

Figure 5.14 Average instructions per cycle (IPC) count for SMT approach 108

Figure 5.15 Average IRF leakage energy savings for CGMT cores 109

Figure 5.16 Average IRF leakage energy savings for FGMT cores 109

Figure 5.17 Data read miss latency per thread for FGMT cores 110

Figure 5.18 Instruction fetch miss latency per thread for FGMT cores 110

Figure 5.19 L2 read miss latency per thread for FGMT cores 111

Figure 5.20 Average IRF leakage energy savings for SMT cores 111

ix

www.manaraa.com

Architecture and Compiler Support for Leakage Reduction Using Power Gating in

Microprocessors

Soumyaroop Roy

ABSTRACT

Power gating is a technique commonly used for runtime leakage reduction in digital CMOS

circuits. In microprocessors, power gating can be implemented by using sleep transistors to selec-

tively deactivate circuit modules when they are idle during program execution. In this dissertation,

a framework for power gating arithmetic functional units in embedded microprocessors with ar-

chitecture and compiler support is proposed. During compile time, program regions are identified

where one or more functional units are idle and sleep instructions are inserted into the code so

that those units can be put to sleep during program execution. Subsequently, when their need is

detected during the instruction decode stage, they are woken up with the help of hardware control

signals. For a set of benchmarks from the MiBench suite, leakage energy savings of 27% and 31%

are achieved (based on a 70 nm PTM model) in the functional units of a processor, modeled on

the ARM architecture, with and without floating point units, respectively. Further, the impact of

traditional performance-enhancing compiler optimizations on the amount of leakage savings ob-

tained with this framework is studied through analysis and simulations. Based on the observations,

a leakage-aware compilation flow is derived that improves the effectiveness of this framework. It is

observed that, through the use of various compiler optimizations, an additional savings of around

15% and even up to 9X leakage energy savings in individual functional units is possible. Finally,

in the context of multi-core processors supporting multithreading, three different microarchitectural

techniques, for different multithreading schemes, are investigated for state-retentive power gating

of register files. In an in-order core, when a thread gets blocked due to a memory stall, the corre-

x

www.manaraa.com

sponding register file can be placed in a low leakage state. When the memory stall gets resolved,

the register file is activated so that it may be accessed again. The overhead due to wake-up latency

is completely hidden in two of the schemes, while it is hidden for the most part in the third. Ex-

perimental results on multiprogrammed workloads comprised of SPEC 2000 integer benchmarks

show that, in an 8-core processor executing 64 threads, the average leakage savings in the register

files, modeled in FreePDK 45 nm MTCMOS technology, are 42% in coarse-grained multithreading,

while they are between 7% and 8% in fine-grained and simultaneous multithreading. The contri-

butions of this dissertation represent a significant advancement in the quest for reducing leakage

energy consumption in microprocessors with minimal degradation in performance.

xi

www.manaraa.com

CHAPTER 1

INTRODUCTION

Advances in integrated circuit (IC) technology have helped the semiconductor industry to keep

pace with Moore’s law for over five decades. Due to technology scaling, the minimum feature size

has continued to shrink while the chip density as well as the transistor performance have continued

to improve. This scaling trend has multiplied the complexity of VLSI circuits which, in turn, has

increased the importance of power considerations in chip design. In high-performance microproces-

sors, power density limits have restricted the upward scaling of clock frequencies to achieve greater

performance. In embedded microprocessors, high power consumption impacts the engineering fea-

sibility of battery-powered portable devices as well as their reliability. Designers have to make a

tradeoff between the size of the battery packs and the operating life of the devices. These issues

have forced the designers to pursue low-power design methodologies in an aggressive manner.

1.1 Power and Energy Concern in Computing Systems

The market for embedded computing systems is proliferating at a tremendous rate. It is reported

that more than one billion cell phones are sold each year and this market is ever expanding [1]. It

is estimated that media devices such as cell phones, video cameras, and digital televisions perform

more computations than desktops, laptops, and data centers and at power consumption rates that

are orders of magnitude lower than those of the latter computation platforms. Efficient embedded

processors and DSPs consume about 250pJ per operation [2], while laptop processors consume

about 20 nJ per operation [3] indicating that embedded processors are about 40X more energy

efficient than laptop processors. This is of paramount importance because embedded processors

feature in portable and handheld devices and the packaging technology restricts the maximum power

1

www.manaraa.com

dissipation of these devices to about 1W [1]. Moreover, the battery life of a handheld device is

one of its most prominent features that impacts its success as a product in the market. Therefore,

low power and energy efficient design techniques are of paramount importance in the design of

embedded processors.

In the domain of high-performance microprocessors, until recently, technology scaling was

making it possible to build increasingly complex processor architectures with larger on-chip caches

operating at higher clock frequencies. In recent years, however, increased concerns about power

density and thermal effects have emerged as fundamental barriers that have severely restricted the

upward scaling of clock frequencies for further performance improvement [4]. Apart from the

benefits offered by technology scaling, advances in architectural design techniques have further

improved the performance of microprocessors. Superscalar CPU architectures with multiple func-

tional units were developed so that several instructions could be executed simultaneously within a

single clock cycle. Deeper pipelines and dynamic scheduling to allow out-of-order execution of in-

struction streams within a single thread are employed to exploit instruction-level parallelism in the

program. However, several complex hardware units such as branch predictors, issue logic, reorder

buffers, etc., are needed to implement out-of-order execution, which in turn requires higher power

and die area budgets. It has been reported that, with the same process technology, a new micropro-

cessor design with performance improvement of 1.5x to 1.7x results in 2x to 3x increase in the die

area [5] and 2x to 2.5x increase in the power consumption [6]. Thus, power efficiency has become

the epicenter of all design efforts from an architectural standpoint as well.

While the CPU performance has been measured in terms of the execution throughput of a single

thread, lately, an alternate metric, referred to as throughput performance, has been gaining more

prominence. Throughput performance is defined as the number of threads that can complete exe-

cution per unit time by utilizing multiple CPU cores to perform more computations in parallel. A

survey of commercially available multi-core processors can be found in [7]. As power dissipation

continues to be an increasingly difficult challenge, there has been a shift in the paradigm in terms

of CPU design. Instead of building a large and complex out-of-order processor, the designers are

building multiple simple in-order processors within the same chip area. Each of those simple cores

2

www.manaraa.com

could further support the simultaneous execution of multiple threads resident within the core. Such

multi-core systems are commercially available applied in high-end servers, gaming platforms, and

embedded processors. Niagara [8] and Niagara2 [9] are multi-core general purpose microproces-

sors from Sun Microsystems used in high end servers that feature up to eight in-order cores. While

each core in Niagara is capable of executing four threads, each core in Niagara 2 is capable of ex-

ecuting eight threads simultaneously. Intel’s Larrabee architecture [10] for visual computing uses

in-order CPU cores that support an extended version of the x86 instruction set. Each core supports

execution of two hardware threads. The number of CPU cores is implementation-dependent. MIPS

1004K coherent processing system [11] is comprised of 1-4 multi-threaded cores, where each core

is capable of executing two hardware threads simultaneously.

1.2 Power Consumption in Digital CMOS Circuits

Power consumption in digital CMOS circuits can be classfied into two major categories - dy-

namic power and static power [12] (Figure 1.1). While dynamic power is due to the activity in

the circuit block and the switching frequency, static power is due to the fact that transistors are

imperfect switches. The major component of dynamic power is contributed by the charging and

discharging of the gate capacitances in the circuit during signal switching. The other component

of dynamic power, short-circuit power, is a result of conducting paths between the voltage supply

and ground for a brief period during which a logic gate makes a transition. During that period both

the pull-down and the pull-up networks are ON. The primary component of static power is due

to the subthreshold drain-source leakage, Isubth, which is dependent exponentially on the threshold

voltage, VT , As VT is reduced linearly, Isubth increases exponentially. The other two components of

static power are due to gate leakage currents and junction leakage currents. In contemporary CMOS

technologies, subthreshold leakage is of paramount concern to circuit designers.

Traditionally, dynamic power has vastly dominated the overall power consumption of CMOS

circuits. However, in sub-90 nm technologies, leakage power has emerged as a significant compo-

nent of the total power consumed. This is because, in order to keep pace with the scaling trends in

technology, the suppy voltage, VDD, was lowered down to avoid excessive power density of the chip.

3

www.manaraa.com

Power components in

digital CMOS

Dynamic or active power

Short-circuit:

Charging and discharging

of capacitors

Static or leakage power

Junction leakage

Subthreshold drain-source

leakage

Gate leakage
both pull-up and pull-down

networks being ON during

output transition

transistors are not perfect

switches

tunneling currents through the

gate oxide

drain-substrate reverse-bias

currents

Figure 1.1 Components of power consumption in digital CMOS circuits. Power consumed due to
subthreshold leakage dominates the static power dissipation component in the contemporary tech-
nologies and is targeted in this dissertation.

This resulted in lowering the threshold voltage, VT , in order to maintain the circuit performance.

This caused the subthreshold leakage current, Isubth, to increase exponentially, thereby increasing

the static power drastically. It has been pointed out in [13] that there has been a 3 - 5× increase

in subthreshold and gate leakage currents per generation due to threshold voltage and gate-oxide

scaling. Therefore, leakage power has become an important design aspect in low-power CMOS

circuits. The main focus of this dissertation is the reduction of the subthreshold leakage component

of static or leakage power in microprocessors.

4

www.manaraa.com

1.3 Motivation for this Dissertation

The issues discussed above form the main motivation for the works reported in this dissertation.

It has been reported that the leakage component of Intel’s Xeon Tulsa processor [14] in 65 nm

technology is about 30% of the total chip power. The core leakage is about 37%. The leakage

components of Niagara [8] and Niagara2 [9] microprocessors by Sun Microsystems, in 90nm and

65 nm technologies, respectively, are between 25% and 30% of the total chip power. In sub-45 nm

technologies, the leakage power component in microprocessors are projected to be at least 50% of

their dynamic power component [15].

In view of these facts, it is important to investigate techiques to reduce leakage in microproces-

sors. In this dissertation, architectural techniques to reduce leakage energy in arithmetic functional

units and register files, both of which are core components of a microprocessor, are proposed. While

a compiler-directed framework with architectural support is presented for reducing leakage energy

in functional units in embedded processors, purely microarchitectural techniques are proposed for

reducing leakage in register files in general-purpose multithreaded processors.

1.4 Contributions of this Dissertation

The main contribution of this dissertation is a set of methodologies proposed at the architec-

ture level to effectively use power gating, a circuit-level leakage reduction technique, for reducing

leakage in embedded and general purpose microprocessors. The theme and the contributions of this

dissertation are shown in Figure 1.2.

A brief description of the contributions are:

• A Framework for Power Gating Functional Units in Embedded Microprocessors with Archi-

tecture and Compiler Support: In this work, a framework is developed to power gate arith-

metic functional units in embedded microprocessors with architecture and compiler support.

The proposed framework includes an efficient algorithm for idle time estimation, appropriate

insertion of sleep instructions within the code, and a method for reactivating the sleeping units

that eliminates the need for having explicit wakeup instructions.

5

www.manaraa.com

Figure 1.2 Contributions of this dissertation. The theme of the disseration is architectural level
leakage reduction in microprocessors. Contributions 1 and 2 are for embedded microprocessors,
while contribution 3 is in the context of multi-core processors for general purpose applications.

• A Compilation Flow to Enhance Leakage Reduction Achieved in Functional Units by Compiler-

directed Power Gating: In the context of the compiler-directed power gating framework dis-

cussed above, the impact of traditional performance-enhancing compiler optimizations on the

amount of leakage savings obtained is studied through analysis and simulations. Based on the

observations made, a leakage-aware compilation flow is derived that improves the effective-

ness of the framework.

• Microarchitectural Techniques for Power Gating Register Files in Multi-core Processors: A

class of microarchitectural techniques for fine-grained state-retentive power gating in integer

register files to save leakage energy is proposed for multi-core processors featuring in-order

cores that support hardware multithreading. In state-retentive power gating, the registers

retain their states through the power gating period. In an in-order core, when a thread gets

6

www.manaraa.com

blocked due to a memory stall, the corresponding register file can be placed in a low leakage

state through power gating for leakage reduction. When the memory stall gets resolved, the

register file is activated for subsequent accesses. While state-retentive power gating in single

cores has been studied in the literature, it is being investigated for multi-core architectures for

the first time in this work.

1.5 Outline of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 describes the background

and a comprehensive literature survey related to the specific problems being addressed in this dis-

sertation. More specifically, first a short tutorial on power gating, the circuit-level leakage reduction

technique that forms the underlying technique in all the micro-architecture support modeled in all

the works. Following that, a short tutorial on computer architecture is presented which describes

the organization of a typical pipelined microprocessor. In Chapter 3, a framework for power gating

arithmetic functional units in embedded microprocessors with architecture and compiler support is

presented. This framework comprises of two components - a hardware component and a software

component. The hardware component includes a library of arithmetic functional units redesigned

with sleep transistors and a microarchitectural model of the embedded processor along with ISA

support for controlling the sleep states of these units. The software component comprises of ex-

tensions made to a compiler infrastructure, which include an efficient algorithm for identifying

program regions where functional units are idle so that sleep instructions may be inserted into the

code to put those units to sleep during program execution. In Chapter 4, the impact of traditional

performance-enhancing compiler optimizations on the amount of leakage savings obtained with the

framework described in Chapter 3 is studied through analysis and simulations. Based on the obser-

vations, a leakage-aware compilation flow is derived that improves the effectiveness of this frame-

work. In Chapter 5, purely microarchitectural techniques are investigated to perform state-retentive

power gating of register files in multi-core processors supporting hardware multithreading. The

techniques proposed are based on the fact that in an in-order core, when a thread gets blocked due

to a pipeline stall, the corresponding register file can be placed in a low leakage state. When the stall

7

www.manaraa.com

gets resolved, the register file is activated so that it may be accessed again. Finally, some concluding

remarks and the challenges going forward are discussed in Chapter 6.

8

www.manaraa.com

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, some fundamental concepts that form the basis of the research work presented in

this dissertation are described. More specifically, we discuss the basic design techniques for reduc-

ing subthreshold leakage in CMOS circuits and describe power gating, a circuit-level technique used

for reducing subthreshold leakage, in detail. Followed by that, we present the basics of pipelined

microprocessors and discuss the support for enabling hardware multithreading in such processors.

A detailed description of the various related works for leakage power reduction in microprocessors

applied at the architecture and microarchitecture level is also presented in this chapter.

2.1 Subthreshold Leakage Reduction Techniques

Subthreshold leakage in CMOS circuits is due to the inability of transistors to act as perfect

on/off switches. Therefore, leakage reduction can be done by [12]:

• Increasing the resistance in the leakage path

• Reducing the voltage over the leakage path

All the fundamental leakage reduction techniques fall under one of the above two categories.

This is shown in Figure 2.1. Most of the techniques fall in the former category because the latter

is hard to achieve. The ability to change the supply voltage to a circuit either requires a variable

voltage supply mechanism or voltage bias circuits that could enable multiple supply voltages. Since

these are hard to achieve in complex designs because of a variety of design issues [12], most of the

state-of-the-art circuit level leakage reduction techniques used by designers fall under the former

category. These techniques [12, 16] are briefly described next:

9

www.manaraa.com

Basis of Subthreshold Leakage

Reduction Techniques

Increasing the resistance

in the leakage path

Reducing the supply voltage

over the leakage path

Transistor

Stacking

Power

Gating

Body

Biasing

Supply Voltage

Ramping

Figure 2.1 Subthreshold leakage reduction approaches. In this dissertation, power gating is the
underlying circuit level leakage reduction technique used in all the architecture level solutions pro-
posed to reduce leakage in microprocessors.

• Transistor Stacking: Stacking of transistors has a super-linear impact on leakage reduction

due to drain-induced barrier lowering (DIBL). DIBL is a deep-submicron effect and is related

to a reduction of the threshold voltage as a function of the drain voltage. For a given circuit

block, the ideal way to impose the maximum transistor stacking would be to control the

inputs of each input gate independently. However, since this is not possible and the only

inputs controllable are the primary inputs to the circuit block, the next best thing is to find

the primary input pattern to this block that minimizes leakage during standby mode [17–19].

Although the leakage savings achieved by this technique is very limited, the advantage of

this technique is that it has negligible impact on performance and its implementation is very

simple.

• Power Gating: The ideal way to eliminate subthreshold leakage is to disconnect the circuit

block from the supply rails. But that would require the availability of perfect on-off switches.

Since such switches do not exist in the contemporary CMOS technologies, switches are used

as large resistors between the virtual supply rails of the circuit block and the global supply

rails. Up to three orders of magnitude of leakage reduction can be achieved by this technique.

Since power gating is the underlying circuit level leakage reduction technique in all the archi-

10

www.manaraa.com

tectural leakage reduction solutions proposed in this dissertation, we discuss power gating in

more details in Section 2.2.

• Body Biasing: An alternative approach to power gating is to decrease the leakage current by

increasing the threshold voltage of the transistors in the circuit block. Each transistor has

a fourth terminal, which can be used to increase the threshold voltage by reverse biasing.

Since the subthreshold leakage current depends exponentially on the threshold voltage, this

technique can be very effective in minimizing leakage in circuits. Moreover, this technique

does not come with a performance penalty and it does not even change the circuit topology.

Although this technique looks very attractive due to these attributes, few of its drawbacks

are very critical in exploring this technique in real designs. First of all, the leakage reduc-

tion achieved by this technique is much lower (by up to two orders of magnitude) than that

achieved by power gating. Secondly, it requires more sophisticated triple-well technology if

both NMOS and PMOS transistors need to be controlled [12].

2.2 Power Gating

Figure 2.2 shows the schematic view of the power gating technique and the various options

available to implement it. If the power gating device, also known as the sleep transistor, is inserted

between the VDD and the pull-up network of the circuit block, it is called a header device. On the

other hand, if it is inserted between the ground rail and the pull-down network of the circuit, it is

called a footer device. Leakage current in the circuit block reduces because of the following two

reasons:

• Increased resistance in the leakage path: The header and the footer sleep devices act as large

resistors to the leakage path during standby mode.

• Source biasing introduced by stacking effect: The additional devices in series with the circuit

pull-up and pull-down networks introduces stacking effect, which increases the threshold of

the transistors in stack.

11

www.manaraa.com

Supply

Virtual
Supply

Sleep

Circuit
Block

Sleep
Transistor

Ground

Virtual
Ground

Sleep
Sleep

Transistor

(a) Footer + header

Ground

Supply

Virtual
Ground

Sleep

Circuit
Block

Sleep
Transistor

(b) Footer only

Ground

Supply

Virtual
Supply

Sleep

Circuit
Block

Sleep
Transistor

(c) Header only

Figure 2.2 Power gating options. Since NMOS transistors are more area-efficient than PMOS tran-
sistors, the footer only option (b) has the minimum area overhead amongst all the three options.
The footer + header option (a) suffers from the maximum area overhead but is the most effective in
achieving leakage reduction.

In Figure 2.2, three power gating options are shown:

• Footer and header: In this configuration (Figure 2.2(a)), both the header and the footer de-

vices are used and are simultaneously turned off when the circuit block is idle. This con-

figuration has a maximum area penalty because of the two sleeper devices but achieves the

maximum leakage reduction by ensuring that the stacking effect is enforced independent of

the input patterns to the circuit block.

• Footer only: In principle, it is sufficient to use only a single power gating device to achieve

leakage reduction. In the footer-only configuration (Figure 2.2(b)), only a footer device (an

NMOS transistor) is used. The area overhead is the minimum in this case.

• Header only: In this configuration, only a header device (a PMOS transistor) is used.

Most often, when a single power gating device is selected, a NMOS sleep transistor is preferred

over the PMOS one because a NMOS transistor’s ON-resistance is smaller than that of a PMOS

transistor for the same transistor width. Since subthreshold current, Isubth, varies exponentially

with respect to the threshold voltage, VT , the savings achieved by the power gating technique are

12

www.manaraa.com

maximized when the technology supports both high VT and low VT transistors. While the latter can

be used for logic to achieve lower delays, the former act as very effective power gating devices.

When power gating is implemented using multiple threshold devices, it is often called Multiple

Threshold CMOS (MTCMOS) technology [20–22].

2.2.1 Performance Aspects of Power Gating

When the circuit block is idle, the sleep transistor (in footer configuration) is placed in the cut-

off mode, thereby introducing a large resistance in the standby leakage path between the supply

and the ground. The circuit is referred to be in the sleep or inactive state. During this state, the

virtual ground charges up to a steady state value that is determined by the resistive divider formed

by the other transistors in the stack. To bring the circuit back to the active state, the virtual ground

is restored to its nominal value by placing the sleep transistor in the saturation mode. Since this

requires discharging the virtual ground node to actual ground, there is a wake-up latency associated

with it. Moreover, since the deactivation and activation of the circuit block involves discharging and

charging the output capacitances of the internal circuit nodes, it restricts how often the circuit block

can be transitioned between the two states to achieve overall energy savings. The period of time

that the circuit block should be kept in sleep state before bringing it back to the active state so that

the leakage energy savings equals the dynamic power overhead incurred circuit activation is known

as the breakeven period [23].

2.3 Pipelined Microprocessors

Pipelining is a very effective implementation technique for improving system throughput with-

out requiring massive replication of hardware. It was first employed in the design of high-end

mainframes in the 1960s - IBM 7030 [24] and CDC 6600 [25]. All modern microprocessors em-

ploy pipelining almost universally. In this section, we present a short tutorial on concepts related to

pipelined microprocessors.

13

www.manaraa.com

2.3.1 Pipelining Basics

In the context of instruction set processors, pipelining involves partitioning the processor design

into multiple stages such that each stage performs only a part of the computation required by each

instruction. A typical instruction cycle can be functionally partitioned into the following five generic

computations [26]:

1. Instruction fetch (IF)

2. Instruction decode (ID)

3. Operand(s) fetch (OF)

4. Instruction execution (EX)

5. Operand store (OS)

A typical instruction cycle starts with the fetching (IF) of a new instruction from the memory to

be executed in the processor core. Following this, it is decoded (ID) so that work to be performed by

the instruction may be determined. Depending on the type of the instruction, one or more operands

may be fetched (OF) from the register file or the memory. Once the necessary operands are available,

the instruction is executed (EX) in the appropriate functional units of the processor. Finally, the

results generated by the computation in the EX stage are stored back (OS) to the register file or the

memory. Since memory access latencies are multiple orders of magnitude slower than the latencies

involved in the tasks done within the processor core, caches are universally employed between the

processor datapath and the memory to speed up memory accesses. A cache that stores instructions

is called an instruction cache (I-cache), while one that stores data is called a data cache (D-cache).

Figure 2.3 shows the GENERIC (GNR) pipeline [26].

2.3.2 Classification of Instruction Types

Computations performed by instructions in a typical computer may be categorized into three

generic tasks - (i) arithmetic operation, (ii) data movement, and (iii) instruction sequencing. Based

on these tasks, in a typical modern processor architecture, instructions are classified into three types:

14

www.manaraa.com

IF

IDID

OF

IDEX

IDOS

Read
I-cache

Access
Register File

Use
Arithmetic
functional

units

Access
D-cache

Figure 2.3 The GENERIC (GNR) pipeline. It has the five generic stages - instruction fetch (IF),
instruction decode (ID), operand fetch (OF), instruction execute (EX), and operand store (OS). It
also shows the the components that are typically accessed at each of these stages. This view of
the pipeline is shown because, in this dissertation, architectural techniques are proposed to reduce
leakage power in the arithmetic functional units and the register file when they are idle during
program execution. It should be noted that this figure does not depict the physical organization of a
pipelined processor core.

1. ALU instructions: These instructions perform arithmetic and logical operations.

2. Memory or load/store instructions: These instructions are used to move data between registers

and the memory.

3. Branch instructions: These instructions control instruction sequencing based on the control

flow of the program.

The semantics of each of the three instruction types can be specified based on the sequence

of subcomputations performed by that instruction type. The semantics of all the instruction types

enumerated above are defined in Tables 2.1, 2.2, 2.3.

15

www.manaraa.com

Table 2.1 Specification of ALU instruction type

Generic Subcomputation Integer Floating Point

IF
Fetch instruction (access
I-cache)

Fetch instruction (access
I-cache)

ID Decode instruction Decode instruction

OF Access integer register file
Access floating point register
file

EX
Perform integer ALU
operation

Perform float point operation

OS
Write back to integer register
file

Write back to floating point
register file

Table 2.2 Specification of memory or load/store instruction type

Generic Subcomputation Load instruction Store Instruction

IF
Fetch instruction (access
I-cache)

Fetch instruction (access
I-cache)

ID Decode instruction Decode instruction

OF
Access integer register file for
base address

Access integer register file for
the base address and the
integer or floating point
register file for the register
operand

Generate effective address
(base + offset)
Read from memory (access
D-cache)

EX

OS Write back to register file
Generate effective address
(base + offset)
Write into memory (access
D-cache)

2.3.3 In-Order Processors

Pipelined processor designs are classfied into two categories - scalar and superscalar - accord-

ing to the number of instructions that can be processed in each of the pipeline stages. A scalar

pipeline is one which at most one instruction may be processed at a time. A superscalar pipeline, on

16

www.manaraa.com

Table 2.3 Specification of branch instruction type

Generic Subcomputation Unconditional branch Conditional branch

IF
Fetch instruction (access
I-cache)

Fetch instruction (access
I-cache)

ID Decode instruction Decode instruction

OF
Access integer register file for
the base address

Access integer register file for
the base address

Generate effective address
(base + offset)

Generate effective address
(base + offset)

Read from memory (access
D-cache)

EX Evaluate branch condition

OS
Update program counter (PC)
with target address

If the branch condition
evaluates to true, update
program counter (PC) with
target address

the other hand, may process more than one instructions at the same time. Figure 2.4 shows examples

of a scalar and a superscalar pipeline. Pipelined processor designs are classfied into two categories

IF

IDID

OF

IDEX

IDOS

IF

ID

OF

EX

OS

Superscalar
Pipeline width = 2

Scalar
Pipeline width = 1

Figure 2.4 Scalar vs. superscalar pipeline.

17

www.manaraa.com

- in-order and out-order - Processors are further classified according to how the instructions from

a program are sequenced within its pipeline as in-order and out-order processors. In an in-order

processor, instructions enter the pipeline, advance synchronously through all the pipeline stages,

and finish in program order. Since, this imposes a lockstep fashion in the way the instructions ad-

vance through the pipeline, such pipelines are also called lockstep or rigid pipelines. The drawback

of such pipelines is that when one instruction gets stalled, all the following instructions also get

stalled which puts severe restrictions on the instruction throughput. In contrast to this, an out-order

processor supports bypassing of a stalled leading instruction by trailing instructions, thereby allow-

ing out-of-order execution of instructions. Due to this reason, the hardware complexity of out-order

processors is significantly more than in-order processors. Most high-performance processors, where

performance has traditionally been of foremost importance, are all out-order processors, while most

embedded processors, where power efficiency is of paramount importance, are in-order processors.

In this dissertation, all the processor models considered are in-order processors.

2.4 Hardware Multithreading

In this section, we present an overview of the various hardware multithreading approaches that

have become increasingly prevalent in modern high performance microprocessors. In the previous

section, the discussion of pipelined processors was restricted to single-threaded support. In Chapter

5, microarchitectural techniques to reduce leakage in register files are proposed in the context of

hardware multithreaded multi-core processors.

Hardware multithreading is an approach which enables a processor to support the simultane-

ous execution of multiple threads. A processor that supports hardware multithreading is called

a multithreaded processor. Multithreading approaches are categorized according to how they are

implemented in hardware [26, 27] and are briefly described here:

• Coarse-Grained Multithreading (CGMT): In this approach (Figure 2.5(a)), a thread uses all

CPU resources until a long latency event, like a cache miss, a long latency operation, etc.,

occurs. Such an event causes a context switch and another ready thread is switched in, which

runs till it encounters a long latency event. This implementation has a context switch latency

18

www.manaraa.com

Switch
threads
during

long
latency
stalls

IF

ID

EX

MEM

WB

Single Core
Pipeline width = 1

Time t Time t+x

Thread T1
Thread T2

(a)

IF

ID

EX

MEM

WB

Single Core
Pipeline width = 1

(b)

Single Core
Pipeline width = 2

(c)

Core 1
Pipeline width = 1 each

Core 2

(d)

Figure 2.5 Multithreading approaches. (a) coarse-grained multithreading (CGMT) with 2 threads
and pipeline width of 1; (b) fine-grained multithreading (FGMT) with 2 threads and pipeline width
of 1; (c) simultaneous multithreading (SMT) with 2 threads and pipeline width of 2; (d) chip multi-
processing (CMP) with 2 threads and pipeline width of 1 per core. A 5-stage MIPS pipeline model
is shown.

associated with it. This is because, depending on the pipeline stage where the long latency

event is detected (e.g., I-cache miss happens in IF-stage but D-cache miss happens in MEM-

19

www.manaraa.com

stage in a MIPS pipeline [26]), the instructions in the preceding stages are squashed, while

the instructions in the succeeding stages are allowed to finish before the next thread can be

run. Each thread context has a private copy of the register file, instruction fetch buffers, if

any, and control logic state, while the rest of the CPU resources are shared. This approach is

also known as blocked multithreading technique.

• Fine-grained multithreading (FGMT): In this category (Figure 2.5(b)), thread context switch-

ing happens at the boundary of one of more clock cycles for ready threads (i.e., threads that

are not blocked due to long latency events). Each thread context has a private copy of the

register file and control logic state, while the rest of the CPU resources are shared. Instruction

fetch-buffers may or may not be shared. FGMT is also known as interleaved multithreading.

• Simultaneous multithreading (SMT): In SMT (Figure 2.5(c)), instructions from two or more

threads are scheduled simultaneously on different functional units during the same cycle.

SMT typically works on superscalar processors that have hardware to support simultaneous

execution for two or more instructions in a single cycle. Each thread context has a private

copy of the register file, instruction fetch buffers, interstage buffers, and control logic state.

The rest of the resources are shared.

• Chip multiprocessing (CMP): In CMP (Figure 2.5(d)), multiple single-threaded processor

cores are instantiated on a die such that they share only the L2 cache and the system in-

terfaces. Each core executes instructions from a different thread independently of the other

threads, interacting only through shared memory.

2.5 Related Work

In microprocessors, the methods at the architecture level utilize circuit-level leakage reduction

techniques discussed earlier. In such approaches, the microarchitectural subsystems are equipped

with multiple leakage reduction techniques that enable putting those subsystems in and out of low-

leakage mode. However, the design of the interface of the controls to those techniques classifies

these approaches into two distinct categories. They are microarchitectural approaches and compiler-

20

www.manaraa.com

directed architectural approaches. In a microarchitectural approach, the logic to regulate those

controls is implemented in hardware. In a compiler-directed approach, the interface of such controls

is included in the instruction set in the form of special instructions or hardware directives, which

the compiler inserts into the code. During the program execution, these instructions regulate the

leakage in the idle subsystems of the processor.

Earlier works [28, 29] on architectural level leakage reduction have concentrated primarily on

the memory subsystems (particularly on caches), since they contribute upto 50% of the total leakage

of the system. The various works on leakage reduction in microprocessors (Figure 2.6) are classi-

fied as (i) microarchitecture level techniques, and (ii) compiler level techniques with architectural

support. A circuit level technique based on reverse body-bias was used for leakage reduction in

the commercial Intel Xscale microprocessor [30]. An analytical energy model to achieve leakage

energy optimization in functional units for superscalar processors is described in [31]. The static

energy in the integer functional units is reduced by employing dual threshold voltage domino logic

design technique. Power gating of execution units is investigated by Hu et. al [23] in which the

activation and deactivation of the functional units are guided by branch prediction decisions. The

techniques discussed in [23, 31] use specifically designed control blocks that monitor the sleep pe-

riods of functional units. The control blocks involve significant dynamic power overhead and need

to be avoided in the design of embedded processors.

Several techniques have been explored at the compiler level to identify opportunities for power

gating. In [32], Zhang et. al. investigate the use of input vector control methods and dynamic

profiling for leakage reduction. The approach in [33] uses static code analysis to identify power

gating opportunities in the program and uses dynamic profiling information to direct the insertion of

power gating instructions into the code. The method does not consider power gating opportunities in

nested loop structures and requires special architectural support to remove power gating instructions

inserted too close to each other which can cause significant performance degradation. In [34], data-

flow analysis is used to estimate functional unit requirements in the basic blocks of the program

and identify opportunities to insert sleep and wakeup instructions at compiler level. The use of

data flow analysis instead of dynamic profiling results in failure to accurately estimate the resource

21

www.manaraa.com

(2001) [30]
(2002) [31]

Clark et al.
Dropsho et al.

Threshold
Voltage Control

Input
Vector Control

Compiler Level Techniques
with Architecture Support

Microarchitectural
Techniques

Leakage Reduction Techniques
Applied in Microprocessors

1 Technique applies to caches only
2 Investigates both input vector control and power gating

(2002) [28]
(2002) [29]

Kaxiras et al.
Flautner et al.

(2004) [23]Hu et al.

Zhang et al. (2003) [32]

1

1

Power Gating Power Gating

You et al.

Rele et al.
Zhang et al.

2

2

Seki et al.
Komoda et al.
This work (2010)

(2002) [33]
(2003) [32]
(2006) [34]
(2008) [35]
(2009) [36]

Figure 2.6 Taxonomy of works on leakage reduction in microprocessors. (the works, unless stated
otherwise, target functional units)

requirements in both single-level and nested loops in the program. Dynamic profiling provides the

runtime characteristics of a program, which can be effectively used in identifying power gating

opportunities. Further, the framework in [34] assumes that every branch in the program is equally

likely to be taken (or not taken). This assumption is too conservative, since it is well known that

the behavior of branch instructions is predictable in a runtime environment, even more so for the

branches that represent loop exit conditions. In [35], Seki et al. presented a fine-grained power

gating scheme for the MIPS R3000 which was incorporated in a prototype chip, Geyser-0, in 90

nm CMOS technology. Komoda et al. [36] proposed a technique similar to that in [34] but with

interprocedural analysis. Roy et al. proposed a framework in [37] that uses both static code analysis

22

www.manaraa.com

and dynamic profiling to identify potential subgraphs in the program during which the units can be

kept deactivated. More recently, power gating has also been used as a primary power management

technique in modern commercial processors [38, 39].

Although there is significant work reported in the literature on leakage power reduction in func-

tional units, very few works in the literature have tried to address leakage reduction in register files.

A multi-banked register file design to improve access speed and reduce total power is presented

in [40], while low-leakage register files with dynamic controls have been proposed in [41, 42]. A

state-retentive register file designed for the ARM processor was fabricated using 65-nm [43] tech-

nology just to study the leakage aspects of a register file in general.

2.5.1 Context and Significance of this Dissertation

The earlier works in leakage reduction in the functional units in microprocessors are primarily

focused on superscalar processors. In this work, the existing body of work in this area is supple-

mented by by a novel framework for compiler-directed power gating, which is particularly geared

towards embedded systems. Further, we also investigate the impact of compiler optimizations on

the opportunities for power gating and derive a leakage-aware compilation flow, which helps gener-

ate code to achieve maximal leakage energy reduction during execution. Finally, while the related

works described in the earlier section on leakage reduction techniques applied to register files repre-

sent important contributions in this field, its application in the context of multi-core processors has

not been addressed in any other work prior to the research effort described in this dissertation.

23

www.manaraa.com

CHAPTER 3

A FRAMEWORK FOR POWER GATING FUNCTIONAL UNITS IN EMBEDDED

MICROPROCESSORS

In this chapter, we present a new framework for power gating the functional units in embedded

system microprocessors without degradation in performance. The proposed framework includes an

efficient algorithm for idle time estimation, appropriate insertion of sleep instructions within the

code, and a method for reactivating the sleeping units only when needed without the use of wakeup

instructions. We introduce the notion of loop hierarchy trees (LHT) to represent the partial ordering

of the nested loops within the program. From the control flow graph (CFG) representation of the

source program, a forest of loop hierarchy trees is constructed and is used to identify the maximal

sub-graphs representing the long idle periods for the functional units. For each sub-graph thus iden-

tified, a sleep instruction is introduced in the program with a list of corresponding functional units to

be deactivated. When an instruction is decoded, the functional units needed for that instruction are

automatically activated by the control unit such that the units are ready before the instruction reaches

the execute stage. This eliminates the need for wakeup instructions to be inserted into the object

code reducing the overheads. In our implementation, the ARM processor architecture was modified

and resynthesized to include power gating by developing a CMOS cell library of functional units

with the above capabilities. Experimental results are reported for a set of 12 benchmarks chosen

from the MiBench suite, which indicate that, on average, our technique reduces the leakage energy

in functional units by 31.1% for integer benchmarks and 26.8% for floating point benchmarks.

24

www.manaraa.com

3.1 Power Gating in Microprocessors

In microprocessors, power gating is used to reduce leakage in parts of the processor which are

not required for sustained periods of time during program execution. However, as discussed earlier,

the implementation of power gating using sleep transistors, incurs some latency overhead, called

activation latency, while activating the circuit. This is the time that the circuit takes to become

electrically stable after the power supply has been restored to the circuit. Moreover, the activation

and deactivation of the circuit results in dynamic power overhead. The minimum period for which

the circuit should remain turned off such that the savings in leakage energy equals the dynamic

energy overhead is called the breakeven period. The activation latency and the breakeven period are

important factors to be taken into account in the implementation of power gating.

In this work, we investigate the above issues in detail and propose a framework for leakage

reduction in the functional units of the datapaths in embedded microprocessor cores. The framework

uses both static code analysis and dynamic profiling to extract program characteristics useful in

determining power gating opportunities for leakage reduction. The identification and analysis of

loop hierarchies within code segments is an important objective in the framework. Thus, we focus

on the iterative code structures in the programs for detection of long idle regions for functional

units. The switches for power gating the functional units are provided at the circuit level, which are

controlled with special instructions inserted within the code during compile time based on idle time

behavior analysis. The salient features of the proposed framework are:

1. The approach uses both static code analysis and dynamic profiling information to identify

power gating opportunities in the program, as well as, to direct the insertion of power gating

instructions into the code.

2. The breakeven period and the activation latency are used in determining power gating oppor-

tunities within the code segments.

3. We introduce the notion of loop hierarchy trees (LHT) to represent the partial ordering of the

nested loops within the program. From the control flow graph (CFG) representation of the

source program, a forest of loop hierarchy trees (LHT) is constructed capturing the partial

25

www.manaraa.com

ordering of the nested loops within the program, which is then used to identify the maximal

sub-graphs representing the long idle periods for the functional units. For each sub-graph

thus identified, a sleep instruction is introduced in the program with a list of corresponding

functional units to be deactivated.

4. The proposed technique inserts only sleep instructions into the code, but does not insert any

wakeup instructions. This is achieved by limiting the activation latency of the functional

units to a single clock cycle and by extending the decode unit so that, whenever an instruction

is decoded, the required functional units are activated just before the instruction reaches the

execute stage. This saves significant instruction overhead in implementing power gating.

A cell library consisting of a set of new cells with power gating capability was designed and

verified using 70nm CMOS technology. Extensive simulations were performed using the ARM

processor as the target architecture model based on the above cell library characterization. Exper-

imental results on the MiBench embedded benchmark suite [44] indicate that significant leakage

reduction is possible using the proposed approach.

3.2 Proposed Framework for Leakage Reduction Using Power-Gating

The proposed framework for leakage reduction shown in Figure 3.1 consists of two major com-

ponents. The hardware component consists of (i) a library of functional units with power gating

capability, and, (ii) an embedded processor architecture which supports power gating for functional

units. The software component consists of extensions at the compiler level to (i) perform source

code analysis, (ii) identify idle times for various functional units, and, (iii) insert sleep instruc-

tions for those functional units at appropriate locations in the source code. The application source

programs are profiled dynamically for run-time characterization and this information is used to

accurately predict long idle times for the functional units so that they can be turned off to save

leakage. Finally, in order to study the impact of power gating on microprocessor performance, a

cycle-accurate simulation of the proposed power gating methodology was performed and a number

of application programs were used for testing.

26

www.manaraa.com

Identification
Idle FU Subgraph

Analysis
Static Code

Application Source

Profiling
Dynamic

Simulation
Cycle−accurate

Instructions
Insert Sleep

Power Gated
Architecture

Library of
Power Gated FUs

Component
Software

Hardware Component

Figure 3.1 Proposed framework for power gating

3.2.1 Hardware Component

The hardware component consists of a library of functional units with sleep transistors and an

architecture with control capabilities for those sleep transistors. The architecture and the design of

functional units are described here.

3.2.1.1 Embedded Processor Architecture with Power-Gating Support

The target embedded processor architecture, as shown in Figure 3.2, is based on the popular

ARMv7 processor core (www.arm.com). The ARMv7 processor core has an integer ALU, a barrel

shifter, and an integer multiplier. Since the processor does not have a floating point unit (FPU),

floating point (FP) operations are emulated using software macros constructed out of integer in-

structions. Since a significant fraction of embedded systems applications (multimedia applications)

operate on FP numbers, a FPU is included in the target architecture. The FPU shown in Figure 3.2,

consists of an adder (ADD), multiplier (MUL), and, a division and square root unit (D/S). The func-

27

www.manaraa.com

Incrementer
Address

Register Bank

Write Data Register

Instruction
Decode

&
Control
Logic

Multiplier
Booth’s

Shifter
Barrel

Floating
Point Unit

Address Register

Instruction Pipeline
& Read Data Register

ALU

SCR

ADD MUL D/S

0
0
0
0
1

ADD
MUL

− Adder
− Multiplier

D/S
SCR

− Division and Square Root
− Sleep Control Register

Figure 3.2 Modified ARM architecture

tional units are designed such that the activation latency is limited to one clock cycle. The details of

the integer and FP functional units and their power gated versions are given in Section 3.2.1.2.

A Sleep Control Register (SCR) is added to the instruction decode logic which drives the sleep

controls of the various functional units, as shown in in Figure 3.2. The activation and deactivation

of the functional units is illustrated in Figure 3.3. The deactivation is carried out using a sleep in-

struction. The functional units that need to be deactivated are specified as operands to the sleep in-

struction, as determined during program analysis. For each functional unit in the sleep instruction,

a ‘0’ is written at the corresponding cell in the SCR. Figure 3.3(a) shows a sequence of instructions.

The contents of the SCR after each instruction is decoded is shown to its right. Before the sleep

instruction is decoded, the contents of the SCR are “11110” indicating that only the FP division and

square root unit is in power gated mode. The operands passed to the sleep instruction are - integer

28

www.manaraa.com

multiplier, FP adder, and FP multiplier. When this instruction is decoded, the cells driving the sleep

controls for each of these functional units are written with a ‘0’ (indicated by the gray colored cells

next to the sleep instruction in the figure), initiating their deactivation process.

sleep imul, fpadd, fpmul

Instruction Fetch

Instruction Execute

Operand Store

Wakeup period
1 cycle

Power restored
to required FU

1

1 1 1

1 0

01

0 00

add $r1, $r5, $r6

ld $r2, 100($r1)

...

...

mul $r3, $r1, $r2 101 0

SCR

(b)

(a)

Instruction Decode

Operand Fetch

Figure 3.3 Example of activation and deactivation of functional units

The activation of the functional units takes place at the decode stage. The functional unit gets

activated during the cycle following the one in which the instruction enters the operand fetch stage in

the pipeline. This is shown in Figure 3.3(b). In the example in Figure 3.3(a), when a subsequent mul

instruction is decoded, a ‘1’ is written at the SCR position corresponding to the integer multiplier

(indicated by the gray colored cell next to the mul instruction in the figure), initiating the restoration

of the power supply to the integer multiplier. Therefore, by the time the instruction enters the execute

stage, the integer multiplier is active to perform computation. This aspect of our design obviates

the need for separate wakeup instructions, thereby, reducing the number of overhead instructions

significantly.

The ARMv7 architecture reserves some instruction formats for instruction extensions in its later

implementations. For example, when the bit 6 of the original ARM multiply instruction is changed

29

www.manaraa.com

from ‘0’ to ‘1’, the instruction is ignored and it does not even generate the undefined instruction

trap. This option can be used to define a new instruction requiring minimal changes in the control

unit. Based on this knowledge, a possible format of the sleep instruction is shown in Figure 3.4(a).

0 0 0 0 0 0

1 1 0 1 X X X X

X X X XX X X X X X X X X 1 1 0 1Cond opvec

opvec

31 28 27 22 21 17 16 8 7 4 3 0

8 7 4 3 016172122272831

(a) Generic format

(b) Sample sleep instruction

sleep imul, fpadd, fpmul

X X X X X X X X X0 1 1 1 00 0 0 0 0 0Cond

Figure 3.4 A possible format of sleep instruction.

The generic format of the sleep instruction is obtained by altering bit 6 in the original multiply

instruction format from ‘0’ to ‘1’, as highlighted by the gray field in the figure. Bits 21 to 17,

indicated as opvec in the figure, correspond to the functional units that are passed as operands. A

‘1’ in that bit vector indicates that the functional unit needs to be deactivated while a ‘0’ indicates

that the sleep control should be left unaltered. Thus, the sleep instruction in Figure 3.4(b) with

integer multiplier, FP adder, and FP multiplier translate to the bit vector “01110” as shown.

3.2.1.2 Design of Power-Gated Functional Units

The functional units are redesigned according to the specifications of the ARM processor. The

integer functional unit comprises of an ALU, a barrel shifter, and a Booth’s multiplier. Since the

ALU is frequently used, no power gating is incorporated into it. The floating point unit comprises

of an adder, a multiplier, and a divide and square root unit, as in [45]. Structural VHDL descriptions

were used to synthesize the functional units using a cell library characterized for latency and power

in 70nm Predictive Technology Model (PTM) [46].

There is a tradeoff between the latency of the functional units and the leakage savings achieved.

Narrower sleep transistors yield higher leakage savings at the expense of increased latency of the

functional units. On the other hand, to incur negligible degradation in the latency of the functional

30

www.manaraa.com

Table 3.1 Latencies of functional units

Functional Pipeline Latency
unit stages (cycles)

Integer ALU 0 1
Barrel Shifter 0 1

Integer Multiplier 1 16
FP Adder 4 6

FP Multiplier 3 10
FP Div-Sqrt Unit 4 19

units, the width of the sleep transistors have to be increased. In the results reported later in Section

3.3, leakage savings indicated correspond to keeping the latency degradation minimal or negligible

(less than 2%). The leakage savings can be significantly increased if we allow further tradeoff with

latency. The area overhead of the power gated functional units is 11% in terms of the width of the

NMOS transistors. Based on the specifications of the area optimized ARM cores, the clock period

was assumed to be 10 ns for the purpose of characterization. The latencies of the functional units

(both regular and power gated versions) for the ARM core in terms of the number of cycles are

listed in Table 3.1.

3.2.2 Software Component

The main task of the software component is to analyze the program behavior and predict regions

in the program where certain functional units are expected to be idle during the execution of the

program so that those functional units may be power gated. This translates to finding out maximal

subgraphs in a CFG of a program pertaining to the idleness of each functional unit. Once these

subgraphs are found, sleep instructions should be inserted at the entry so that the functional units

are deactivated when the program control enters these subgraphs during its execution.

The control flow semantics of a program are represented in the form of a control flow graph

(CFG), in which the vertices represent the basic blocks and the edges represent the transfer of

control flow between the basic blocks. A basic block is defined as a straight-line code sequence

with no control instruction. In the example in Figure 3.5, the code sequence multiplies two matrices

31

www.manaraa.com

sum

j

flag

k

k

flag

i

i

j

j

sum

flag

sum

j

flag

1

0

FALSE

TRUE

FALSE

TRUE

1

j+1

j+1

k+1

1

sum + A[i,k]*B[k,j]

1

0

i+1

for

(k<=n)?

(j<=m)?

(i<=m)?

(j<i)?

i

(C[i,j]!=0)?

mto1

for k nto1 loop l3

loop

loop l

l

4

2

l

l

l

l

l

3

1

2

1

4

return

return

end for

end for

end for

end for

end if

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

1:

2:

3:

4:

8:

7:

9:

10:

5:

6:

11:

12:

for

for j

j

m

i−1to

to

1

1

loop

15:

14:

13:

16:

sum/norm

sum / norm

if

sum sum + A[i,k] * B[k,j]

(C[i,j] != 0)

C[i,j]

C[i,j]

flag

flag

Figure 3.5 A sample piece of code and its CFG

of orders (m× n) and (n×m), normalizes the resultant matrix with respect to a parameter, norm,

and returns a boolean value indicating if the resultant square matrix is an upper triangular matrix.

32

www.manaraa.com

3.2.2.1 Identifying Potential Power-Gating Regions in the CFG

While generating the CFG for the source program, each vertex is annotated with the functional

unit requirement of the basic block represented by that vertex. Consider a subgraph of the run-

time trace of a program. The run-time trace is formed by tracing the edges of the CFG during

the execution of the program. Let vertex u represent a basic block that does not use a particular

functional unit, say r. Let P represent the set of all unique paths starting at vertex u and terminating

at the earliest vertices such that the basic blocks represented by them use the functional unit r.

Let tclk be the clock period and N(p) be the number of clock cycles required to execute the

instructions in path p ∈ P. Then the total time spent in executing the instructions in p is given by,

tp = N(p)tclk (3.1)

Let L(p), the length of the path p, be described in terms of the number of instructions in p. If the

maximum IPC (instructions per cycle) count, which is determined by the fetch and decode width of

a processor, is λ, then

L(p)≤ λN(p) (3.2)

The inequality in Equation (3.2) indicates that the IPC count for a code segment can be smaller than

λ on account of cache misses, branch mispredictions, pipeline flushes, etc. Eliminating N(p) from

Equation (3.1) and Equation (3.2), we obtain,

tp ≥
1
λ

L(p)tclk (3.3)

It can be noted, from Equation (3.3), that for an IPC count of at most 1, the execution time for the

instructions in p can be lower bounded by the product of the number of instructions in p and the

clock period.

Now, let the leakage energy saved per unit time by keeping the functional unit r deactivated is

δr and that the dynamic energy overhead in activation and deactivation is Δr. The breakeven period,

33

www.manaraa.com

tmin, is given by,

tmin =
Δr

δr
(3.4)

So, for a path p to generate energy savings, the time spent in executing the instructions in p should

be more than tmin, i.e., tp ≥ tmin. This is satisfied if,

1
λ

L(p)tclk ≥ tmin =
Δr

δr

⇒ L(p) ≥
λΔr

δrtclk
= Lth (3.5)

The quantity λΔr/δrtclk is called the threshold length and is denoted by Lth. Equation (3.5) denotes

that if the number of instructions in a path, p, is greater than the threshold length for functional

unit, r, the energy savings obtained due to the low leakage state of r would be greater than the

energy required to activate r, thereby, resulting in overall energy savings. If the relation, specified

by Equation (3.5), is satisfied for all p ∈ P, then

tp ≥ tmin, ∀ p ∈ P (3.6)

which ensures that the leakage energy saved over all the paths in P exceeds the dynamic energy

overhead incurred, thereby, giving overall savings.

Although, the above approach ensures energy savings in every path in the subgraph, it is a

rather conservative approach. During the execution of the program, some of the paths in P may be

greater in length and/or traversed more frequently than the rest. Thus, there is a possibility that the

combined energy savings achieved along those paths exceeds the combined energy losses incurred

along the rest of the paths, still resulting in overall energy savings. If np is the number of times the

path p ∈ P is traversed, then, using Equation (3.5), the leakage energy savings can be expressed as,

Esavings = ∑
p∈P

np(
L(p)δrtclk

λ
−Δr) (3.7)

34

www.manaraa.com

If ′P⊆ P be the set of paths whose length is greater than Lth defined as, ′P = {p | p ∈ P and L(p)≥

Lth}, i.e., the set of paths whose length is greater than Lth then Equation (3.7) can be rewritten as,

Esavings = ∑
p∈′P

np(
L(p)δrtclk

λ
−Δr)

− ∑
p∈P−′P

np(Δr−
L(p)δrtclk

λ
) (3.8)

From Equation (3.8), it can be observed that if subgraphs are identified in the program CFG

which can result in program execution paths of length, at least, Lth, such that: (i) a functional unit is

not required in those paths; and (ii) the paths are also traversed more often, we find potential regions

in the program CFG which are good candidates for power gating.

3.2.2.2 Subgraphs Enclosed Within Loops

For the purpose of identifying regions in a program, not only the functions but also the loops

within the functions are considered. Considering program regions enclosed within entire functions

will provide a poor granularity in finding opportunities for power gating. Moreover, since the ex-

ecution of loops usually varies dynamically with input data, a program usually spends a variable

fraction of execution time in subgraphs enclosed within loops. In this context, we propose and use

l3

l4l2

l1

Figure 3.6 LHT for CFG in Figure 3.5

the notion of loop hierarchy trees (LHTs), which is essentially a tree data structure that captures the

partial ordering of nested loops within a function in the source program. At compile time, the LHTs

are used to determine long intervals between successive uses of the functional units thus identify-

35

www.manaraa.com

ing opportunities for applying power gating to the functional units. During the static code analysis

phase, for each function in the source program, a forest of the LHTs is created. Each vertex of a

LHT denotes a loop in the source program and its children denote the loops that are nested imme-

diately within that loop. Each vertex is annotated with the functional unit requirement of the loop

corresponding to that vertex. Figure 3.6 shows the LHT for the example in Figure 3.5. Loop l1 has

2 nested loops at the same level, l2 and l4. In the LHT, this translates to l1 being the root of the tree,

and, l2 and l4 being its child nodes. Since loop l2 further has l3 as a nested loop, l3 is a child node

of l2 in the LHT. In the remainder of this article, we use the term child loop with respect to a parent

loop to denote a loop that is immediately nested in the parent loop.

An essential property of the LHT is that it captures a partial ordering of the loops in a program.

With respect to the example in Figure 3.6, loop l1 comprises of a set of basic blocks that is a superset

of the set of basic blocks that form loops l2 or l4. Therefore, the functional unit requirements of

loops l2 and l4 are subsets of the functional unit requirements of loop l1. If the loop l1 does not

require a functional unit, say r, it implies that both loops l2 and l4 do not require r. Therefore, if r

is deactivated at the entry of l1 then it will remain deactivated during the executions of loops l2 and

l4 as well. Similar observation can be made for loops l2 and l3 as well. However, since loops l2 and

l4 do not share any vertices of the CFG among themselves, their functional unit requirements are

independent of each other.

During the dynamic profiling of the source program, the vertices in the CFG of the program

are annotated with the corresponding basic block execution counts and the vertices in the LHT

are annotated with the corresponding loop execution counts. The execution count of a loop is the

number of times the loop is entered during the dynamic profiling of the program. This is the same

as the execution count of the entry basic block of the loop. Consider that Gi = (Vi,Ei) is the CFG

of the ith function in the source program, where Vi is the set of vertices corresponding to the basic

blocks in the function and Ei is the set of directed edges indicating the flow of control between the

basic blocks. Let li be a loop in Gi, such that S(li) ∈Vi denote the set of vertices in li and Ci denote

the set of child loops of li. The total length of the loop li, which is defined as the total number of

instructions executed over all iterations of li during the dynamic profiling stage, can be represented

36

www.manaraa.com

by the recursive relation,

Ltot(li) = ∑
ci∈Ci

Ltot(ci)+ ∑
v∈S(li)−

S
ci∈Ci

S(ci)

Lbb(v)g(v) (3.9)

where, Ltot(ci) is total length of nested loop ci, Lbb(v) is length of basic block corresponding to

vertex v, and g(v) is the execution count of the basic block corresponding to vertex v. In words,

the total length of a loop is calculated as the sum of the number of instructions executed over all

iterations of its child loops and the number of instructions executed as part of the basic blocks in

the loop, which are not part of the child loops. Then, the average length of loop li is defined as the

average number of instructions executed during one iteration of li and is given by,

Lavg(li) =
Ltot(li)

f (li)
(3.10)

where, f (li) is the execution count of loop li. Similarly, the average length of any of the child loops

ci, of li, is given by

Lavg(ci) =
Ltot(ci)

f (ci)
(3.11)

where, f (ci) is the execution count of loop ci. Substituting Equation (3.10) and Equation (3.11) in

Equation (3.9), we get the following recursive relation for Lavg(li),

Lavg(li) =
1

f (li)

(
∑

ci∈Ci

Lavg(ci) f (ci)

+ ∑
v∈S(li)−

S
ci∈Ci

S(ci)

Lbb(v)g(v)
)

(3.12)

The average lengths of the loops are used to make decisions about inserting sleep instructions in

cases where the loop requires a functional unit but only a subset of the nested loops within that

loop have the same functional unit requirement. The Lavg values for all the loops in the CFG can be

calculated by running a breadth first search from the root of each tree in the LHTs. For the functions

that are called from within a loop, the entire function is considered as a basic block in the above

37

www.manaraa.com

formulation in Equation (3.10). Also, each function in the source program is separately analyzed

for insertion of sleep instructions.

3.2.2.3 Insertion of Sleep Instructions

To find the locations in the program to insert sleep instructions, a depth first traversal of the

nodes in each LHT is performed starting at its root. This traversal is done once for each functional

unit and is terminated as soon as it is found that the entire loop corresponding to the node does not

use the functional unit. Since dynamic profiling at the basic block level can only acquire the total

execution count of each loop in the program, we normalize the execution count of a child loop with

respect to its parent loop to quantify the iterative degree of the child loop. Iterative degree of a loop

really means the number of executions of the loop per execution of its parent loop. We define the

normalized average length of loop x, Lnorm(x), as,

Lnorm(x) = Lavg(x)
f (x)

f (parent(x))
(3.13)

where, f (x) is the execution count of loop x, f (parent(x)) is the execution count of the parent

loop of loop x. Refering to the CFG in Figure 3.5, loop l3 does not have a division operation

while its parent loop, l2, has a division operation. Therefore, loop l2 becomes a potential subgraph

for power gating the divider. However, the amount of savings obtained by keeping the divider

powered down depends on the number of times loop l3 executes each time loop l2 is executed. It

can be observed that loop l3 iterates m2n times, whereas, loop l2 iterates m2 times. Therefore, if

m = 8 and n = 4, f (l3) = 82 · 4 = 256, while f (l2) = 82 = 64. On the other hand, if m = 4 and

n = 16, f (l3) = 42 · 16 = 256, but f (l2) = 42 = 16. Thus, although the total number of times loop

l3 is executed is the same (256) in both cases, the latter case is more favorable for power gating

the divider since there are 4 times as many instructions executed between two successive division

operations in this case compared to those in the former. Thus, the normalization process considers

nested loops that are small but iterative enough to be potential subgraphs for power gating.

38

www.manaraa.com

Algorithm 1 INSERT-SLEEP(F) � Algorithm to insert sleep instructions
1: S←Φ
2: for all tree T ∈ F do
3: for all functional unit r ∈ R do
4: INSPECT(root(T),r)
5: end for
6: end for
7: UNIQIFY(S)

Algorithm 1 represents the pseudocode for the routine INSERT-SLEEP. The set S contains the

sleep instruction locations. It is set to a NULL set at the beginning (line 1). In lines 2-6, the two for

loops iterate over all the LHTs in the LHT forest F for each functional unit in R and calls the routine

INSPECT at the root of each tree. After all the LHTs are inspected, in line 7, the routine UNIQIFY

is called to uniqify all the sleep instructions in set S. It should be noted that the normalized length

of all the loops, Lnorm(), in the program and the threshold number of instructions for each functional

unit, Lth(), are already known before the routine INSERT-SLEEP is called.

Algorithm 2 INSPECT(x,r) � Algorithm to inspect loops

1: if r /∈ res(x) then
2: if Lnorm(x)≥ Lth then
3: S← S∪{e(x),r}
4: end if
5: else
6: for all y ∈Cx do
7: INSPECT(y,r)
8: end for
9: end if

Algorithm 2 represents the pseudocode for the routine INSPECT which takes a vertex of a

LHT, x, and a functional unit, r, as the arguments. In lines 1-4, it checks whether r is used in x

or not. The functional unit requirement for loop x is given by res(x). If r is not used in loop x, it

checks the normalized length of x, Lnorm(x). If Lnorm(x), is greater than the threshold number of

instructions, Lth, the location is marked (added to the set S) for insertion of a sleep instruction for

deactivating functional unit, r. The location is a two element tuple consisting of the basic block

leading to the loop, e(x), and the functional unit, r. If, however, r is used in the loop x, it calls

39

www.manaraa.com

INSPECT recursively on all the child vertices of x (lines 5-8). In other words, the loops nested in x

are inspected to explore the possibility of power gating r.

Algorithm 3 UNIQIFY(S) � Algorithm to uniqify the sleep instructions
1: Sort the elements in S
2: for all unique locations do
3: Merge all the FUs to form one sleep instruction
4: end for

The routine UNIQIFY, shown in Algorithm 3, replaces separate sleep instructions which might

have been inserted for each functional unit at the same location with a single sleep instruction with

all those functional units as its operands. In line 1, the elements in S are sorted in ascending order

by their locations. In lines 2-4, a unique sleep instruction is generated for all the functional units

which have the same location.

3.2.2.4 Time Complexity

Since the routine INSPECT implements a DFS traversal in T , its worst-case time complexity

is O(|V |+ |E|). However, since for a rooted tree, |E| = |V |−1, the worst-case time complexity of

INSPECT is O(|V |). Note that |V | denotes that number of loops in a function. Therefore, the worst-

case time complexity of INSPECT is linear in the number of loops in the function corresponding

to the LHT T . The time complexity of routine UNIQIFY is O(|S| log |S|), where S is the number

of sleep instructions inserted. The routine INSERT-SLEEP makes calls to INSPECT for all the

LHTs for each functional unit. Since there is one LHT for each function in the program, the worst-

case time complexity of lines 1-6 in INSERT-SLEEP is O(n ∗ |R|), where n is the total number of

loops in the entire program across all functions and |R| is the total number of power gating enabled

functional units. However, |R| is constant since the number of functional units is constant. Thus, the

worst-case time complexity of lines 1-6 in INSERT-SLEEP is O(n), which is linear in the number

of loops in the program. However, the number of sleep instructions that can be inserted can be a

maximum of the number of loops present and, therefore, |S| ≤ n ∗ |R|. Thus, the worst-case time

complexity of the call to the routine UNIQIFY in line 7 of INSERT-SLEEP is O(n logn). Therefore,

the worst-case time complexity of routine INSERT-SLEEP is O(n logn).

40

www.manaraa.com

3.3 Experimental Setup and Results

3.3.1 Energy Component Calculations

Figure 3.7 shows the instantaneous power graph superimposed on the instantaneous voltage

graph at the virtual ground for a footer sleep transistor configuration. The graph depicts the signifi-

cant time intervals for the calculation of the various energy components of a power gated functional

units. Vvrgnd refers to the voltage at the virtual ground. Pinst refers to the instantaneous power dis-

sipated by the circuit. At time, t0, when the sleep transistor is switched OFF, Vvrgnd rises to Vdd by

time t1. From time t1 to t2, all the capacitances in the circuit reach their final charge. During this

interval, the circuit still dissipates instantaneous power which slowly approaches the steady state

leakage power in its OFF state, PLOFF . Thus, the overhead energy, Et0−t2 , in deactivating the circuit

is the total energy dissipated during the interval t0 to t2, and is given by the area under the curve for

Pinst during the interval t0 to t2 (indicated by shaded area in dark gray in Figure 3.7):

Et0−t2 = Et0−t1 +Et1−t2 (3.14)

1 2 3 4 50 t tt t t t

OFF
(idle)

Switch
ON

(transient)
ON

(active)OFF
Switch

(transient)

vrgnd

inst

ddV

P

V
ol

ta
ge

 a
t V

ir
tu

al
 G

nd

V

0

Time

Instantaneous Pow
er

P

P

L

LOFF

ON

Figure 3.7 Superimposed voltage and power graphs as functions of time

41

www.manaraa.com

It is only after time t2 that the circuit starts to dissipate PLOFF , which is the steady state leakage

power dissipation of the circuit in sleep state. The overhead energy required while activating the

circuit is considered next. At time t3, the sleep transistor is switched ON, Vvrgnd falls to Vgnd by time

t4. From time t4 to t5, all the capacitances reach their final charge. The overhead energy in activating

the circuit is the total energy dissipated during the interval t3 to t5 (indicated by shaded area in dark

gray in Figure 3.7, denoted by Et3−t5 .

Et3−t5 = Et3−t4 +Et4−t5 (3.15)

After time t5, the circuit starts to dissipate PLON . This is the steady state leakage power dissipation

of the powered circuit when it is idle.

The calculations of the energy components of the library components are performed using

HSPICE simulations with the 70nm PTM files. The activation and deactivation overhead ener-

gies (areas indicated by dark gray shades) are calculated using piecewise linear approximation of

the curves. The dynamic energy components are computed by averaging the power reported by

HSPICE over pseudorandomly generated inputs. During the calculation of the dynamic energy

components, the sleep transistors were turned on. The energy components of each functional unit

is estimated as the sum of the energy components of its constituent component instances. For a

functional unit r, the dynamic energy overhead incurred during activation and deactivation of r, Δr,

is calculated as,

Δr = Et0−t2 +Et3−t5 (3.16)

Table 3.2 shows the energy values and the threshold lengths that are estimated for each of the

functional units.

42

www.manaraa.com

Table 3.2 Average energy components of functional units

Functional Leakage Leakage Leakage Overhead Overhead Dynamic
Unit No power gating OFF ON activation deactivation component Lth

(nJ/cycle) (nJ/cycle) (nJ/cycle) (nJ) (nJ) (nJ/operation)
Int ALU* 1.26E-04 - - - - - -

Barrel Shifter 3.01E-04 1.64E-04 3.12E-04 5.68E-02 2.59E-04 6.13E-02 415
Int Multiplier 2.61E-04 1.46E-05 2.65E-04 6.07E-02 2.34E-04 7.23E-02 530

FP Adder 9.18E-04 4.93E-04 9.20E-04 1.91E-01 8.82E-04 2.16E-01 453
FP Multiplier 8.13E-04 4.23E-04 8.17E-04 1.66E-01 6.73E-04 1.93E-01 428

FP Div-Sqrt Unit 1.60E-03 8.74E-04 1.64E-03 3.80E-01 1.34E-03 4.16E-01 523
*Since the integer ALU is not power gated, its entries are omitted from the cells pertaining to the power gated version.

43

www.manaraa.com

3.3.2 Cycle-Accurate Simulation

We used the SimpleScalar-ARM distribution [47] for modeling the proposed embedded archi-

tecture and MiBench embedded benchmark suite [44] for experimentation. We chose two bench-

marks from each of the categories of applications in MiBench which are: Automotive and Industrial

Control, Network, Security, Consumer Devices, Office Automation, and Telecommunications. The

object code for the program was disassembled using the gcc tools for ARM, available with the dis-

tribution. Static code analysis was performed on the CFG generated for the functions in the source

program. Although sleep instructions were not inserted into the standard library functions, they

were analyzed for their functional unit requirements. The profiling tool with the SimpleScalar dis-

tribution, sim-profile, was used to perform dynamic profiling of the program and sim-outorder

to perform cycle-accurate simulation after the insertion of the sleep instructions.

The embedded processor configuration is based on the Intel StrongARM SA-1 processor (Table

3.3). All the experiments were performed on a set of benchmarks from the MiBench suite, whose

details are tabulated in Table 3.4. For each benchmark, the leakage energy consumption during its

execution on a processor with power gated functional units was compared with the leakage energy

consumption on a processor without any power gated functional units. The savings in leakage

energy for integer benchmarks and the floating point benchmarks are plotted in Figure 3.8 and

Figure 3.9, respectively.

The leakage energy savings achieved for the integer benchmarks range from 25.6% to 37.4%,

resulting in an average of 31.1%. For the FP benchmarks, the leakage energy savings range from

22.6% to 30.4%, resulting in an average of 26.8%. Further, the fraction of total simulation cycles

Table 3.3 ARM processor configuration. [44]

Fetch Queue (instructions) 2
Branch Predictor Not-taken
Fetch & Decode Width 1
Issue width 1
Instruction L1 Cache 16K, 32-way
Data L1 Cache 16K, 32-way
L2 Cache None
Memory (bus width, first block latency) 4-byte, 12 cycle

44

www.manaraa.com

Table 3.4 Benchmark details

Benchmark Category Dynamic Benchmark
Name Instruction Count Type

bitcount Automotive 49.6 Integer
qsort Automotive 43.6 Integer

jpeg decode Consumer 6.7 Integer
lame Consumer 97.2 Floating Point

dijkstra Network 64.9 Integer
patricia Network 103.9 Integer
rsynth Office 57.9 Floating Point
ispell Office 8.4 Integer

fft Telecomm. 52.7 Floating Point
fft-inverse Telecomm. 65.8 Floating Point

rijndael Security 30.7 Integer
sha Security 13.6 Integer

for which each of the units was power gated is shown in Figure 3.10 (integer units) and Figure

3.11 (floating point units). Since there was less than 0.1% performance degradation in terms of the

additional cycles required to execute the sleep instructions, those numbers are not included in the

table.

Total Leakage Savings in Integer Benchmarks

0

5

10

15

20

25

30

35

40

bitc
ount

qso
rt

jp
eg

dec

dijk
st

ra

pat
ric

ia
isp

ell

rij
ndae

l
sh

a

Benchmarks

P
er

ce
n

ta
g

e
(%

)

Figure 3.8 Total leakage energy savings in integer benchmarks. These numbers are reported consid-
ering only the integer units (the shifter and the integer multiplier).

45

www.manaraa.com

Total Leakage Savings in FP Benchmarks

0

5

10

15

20

25

30

35

lame rsynth fft fft-inv

Benchmarks

P
er

ce
n

ta
g

e
(%

)

Figure 3.9 Total leakage energy savings in floating point benchmarks. These numbers are reported
considering both integer and floating point functional units.

Fraction of simulation cycles that the integer units were
power gated

0
10
20
30
40
50
60
70
80
90

100

bitc
ount

qso
rt

jp
eg

dec
lam

e

dijk
st

ra

pat
ric

ia

rs
yn

th
isp

ell fft
ff-

in
v

rij
ndae

l
sh

a

Benchmarks

P
er

ce
n

ta
g

e(
%

)

Shifter
Int-Mult

Figure 3.10 Fraction of total simulation cycles for which the integer units were power gated. Since
both integer and floating points units use integer units, these numbers are reported for all the bench-
marks.

46

www.manaraa.com

Fraction of simulation cycles that the FP units were
power gated

0
10
20
30
40
50
60
70
80
90

100

lame rsynth fft fft-inv

Benchmarks

P
er

ce
n

ta
g

e
(%

)

FP-Add
FP-Mult
FP-Dsqt

Figure 3.11 Fraction of total simulation cycles for which the floating point units were power gated.
These numbers are reported only for the floating point benchmarks because integer benchmarks do
not use floating point units.

3.4 Discussion

In this chapter, a framework for power gating the functional units in the datapaths of embedded

processor architectures in order to achieve leakage reduction at the compiler level was described.

The proposed scheme is based on the fact that most embedded processors operate with longer clock

cycles than the superscalar processors. The longer clock cycle helps in activation of the needed

functional units by using control signals from the decode stage. The use of more sophisticated

techniques such as dual sleep transistors and charge recycling devices in the design of the func-

tional units need to be investigated for improving the power gating opportunities during program

execution.

47

www.manaraa.com

CHAPTER 4

IMPACT OF COMPILER OPTIMIZATIONS ON POWER GATING

In this chapter, we investigate the impact of compiler optimization techniques on power gating

implemented with compiler and architectural support to reduce leakage in the arithmetic functional

units of microprocessors. Power gating can be implemented using sleep transistors to selectively

deactivate functional units in the datapath that would remain idle for sustained periods of time dur-

ing program execution. During compile time, the idle times for various functional units can be

identified and sleep instructions can be inserted within the code to deactivate those units during pro-

gram execution. They can be subsequently awakened through use of hardware control signals when

their need is detected during instruction decode stage. In this context, the effectiveness of power

gating for leakage reduction depends on the ability of the compiler to identify the program regions

in which all or some of the functional units are expected to remain idle for periods long enough

to provide leakage savings considering the overheads involved. However, the usage of resources

in a program is dependent not only on its source code description but also on the code transforma-

tions frequently performed by the compiler for improving the performance of the executable binary.

Therefore, the effectiveness of compiler-directed power gating could be largely dependent on the

compiler optimizations performed during code generation. In this paper, we develop a leakage

aware compilation flow based on a comprehensive study of the combined effects of various com-

piler optimization techniques on power gating through analysis and simulations. While GCC is used

as the compiler framework for our study, the embedded processor is modeled based on the ARM

architecture modified to include the hardware support needed for power gating. Simplescalar-ARM

is used for evaluating energy and performance results for the benchmarks chosen from MiBench

and MediaBench suites. Experimental results indicate that, through the use of different compiler

optimization techniques, while the leakage energy savings due to power gating in individual func-

48

www.manaraa.com

tional units could be increased by 15% in benchmarks from MediaBench, the same for benchmarks

from Mibench could be increased by up to 9 times.

4.1 Motivation

An important task in compiler-directed power gating is to identify program regions in which

functional units are expected to be idle for long periods of time. However, the idleness or usage

of functional units is directly influenced by the code transformations performed by the compiler

during code generation. Such transformations are often performed by a compiler to improve the

performance of the program executable. The plots in Figure 4.1 show the impact of certain com-

piler optimizations for performance improvement on power gating of the integer multiplier in an

embedded microprocessor. Table 4.1 describes the legends used in the plots. The benchmarks

Dijkstra and Sha are integer benchmarks, whereas the rest are floating point benchmarks. For

each benchmark, the fraction of idle cycles for which the multiplier is kept deactivated during the

entire program runtime is plotted in Figure 4.1(a). It can be seen that the strength reduction opti-

mizations, which remove redundant integer multiplications in the program, improve power gating

of the multiplier significantly. The savings in the total energy dissipated due to leakage in the func-

tional units is shown in Figure 4.1(b). This suggests that compiler optimizations play a critical role

in the effectiveness of compiler-directed power gating techniques. Therefore, it is of immense in-

terest to investigate the effect of a larger spectrum of performance-improving code optimizations on

the opportunities for power gating of functional units.

Table 4.1 Description of the legends in Figure 4.1

Legend Description
unopt No optimizations
sccp Sparse Conditional Constant Propagation (SCCP) [49]
lcm SCCP + Lazy Code Motion (LCM) [50]
wsr SCCP + LCM + Weak Strength Reduction (WSR) [51]
osr SCCP + LCM + Operator Strength Reduction (OSR) [52] + WSR

In [53], Kandemir et al. studied in detail the effects of a few high level compiler optimiza-

tions on dynamic power and energy consumption in microprocessors. Since leakage power has

49

www.manaraa.com

 0

 20

 40

 60

 80

 100

D
i
j
k
s
t
r
a

S
h
a

F
f
t

F
f
t
I

S
u
s
a
n
E

M
p
e
g
2
E

P
e
r
c
e
n
t
a
g
e

unopt
sccp
lcm
wsr
osr

(a) Fraction of idle cycles for which the integer multiplier is power gated

 0

 10

 20

 30

 40

 50

 60

D
i
j
k
s
t
r
a

S
h
a

F
f
t

F
f
t
I

S
u
s
a
n
E

M
p
e
g
2
E

P
e
r
c
e
n
t
a
g
e

sccp
lcm
wsr
osr

(b) Leakage energy saved due to power gating after code optimizations over that in the unopti-
mized case

Figure 4.1 Impact of a few compiler optimizations on power gating [48]

become a critical aspect of low power VLSI design in the recent years, it is important to study the

factors that influence leakage power consumption of a system directly or indirectly. In this work,

we use the open source production quality compiler, GNU Compiler Collection (GCC) [54], as the

compiler framework to study the influence of performance enhancing compiler optimizations on

50

www.manaraa.com

compiler-directed power gating in embedded processors. The main contribution of our work is a

leakage aware compilation flow that can be used to selectively apply compiler optimization tech-

niques on an application with an objective to improve power gating opportunities of the functional

units in an embedded microprocessor during runtime, thereby increasing leakage energy savings.

The Simplescalar-ARM distribution [55] is used to perform extensive simulations on a set of floating

point benchmarks from Mibench [44] and MediaBench [56] suites.

4.2 Impact of Compiler Optimizations on Power Gating

In this section, the analyses of various compiler optimizations are presented from the perspec-

tive of power gating [57]. The optimizations that apply locally to a procedure are categorized as

intraprocedural optimizations and those that apply across procedures are categorized as interproce-

dural optimizations.

4.2.1 Intraprocedural Optimizations

The optimizations discussed here are performed on the control flow graph of a procedure and

they deal with the removal of redundant arithmetic operations within the code. Such optimizations

directly influence the opportunities for keeping one or more functional units deactivated in a pro-

gram region and, therefore, can be extremely effective in generating code that is conducive to power

gating.

4.2.1.1 Dominator Optimizations

These optimizations use the dominance information [57] of the control flow graph for the pro-

cedure to perform various optimization tasks. Common dominator optimizations include dead code

elimination, copy and constant propagation, common subexpression elimination (CSE), etc.

Figures 4.2 and 4.3 illustrate the impact of CSE techniques on the power gating opportunities

in a procedure. In Figure 4.2(a), the expression a/b (procedure f () writes to a and b) is fully re-

dundant in the basic block 5 because it is computed in both of its predecessor blocks, 3 and 4.

However, the expression a · b is partially available in basic block 5 because it is not computed

51

www.manaraa.com

x = a

w = a/b
x = a/b
y = a*b

f (&a, &b)

5

43

1

2

w = 2*a*b + a/b

(a) Original CFG. The loop has multiply and di-
vide operations.

x = a
t = a/b

w = t
x = t
y = a*b

f (&a, &b)

5

43

2

1

w = 2*a*b + t

(b) After global common subexpression elimina-
tion. The expression t = a/b is moved to basic
block 2.

w = t
x = t
y = a*b

t = a/b
f (&a, &b)

x = a

5

43

2

1

w = 2*a*b + t

(c) After loop invariant code motion. The expres-
sion t = a/b is moved out of the loop. Now the
loop does not have any divide operations.

Figure 4.2 Example to illustrate the impact of global common subexpression elimination on the
usage of functional units

in basic block 4. Global CSE (GCSE) moves the computation of a/b to basic block 2 (the loop

header) (Figure 4.2(b)). When loop invariant code motion (described later in Section 4.2.1.2) is

performed (Figure 4.2(c)), the expression is moved out of the loop, thereby making the divider

52

www.manaraa.com

t = a/b

w = t
u = a*b

w = 2*u + t

y = u

x = t
u = a*b

x = a

f (&a, &b)

5

3 4

2

1

(a) After partial redundancy elimination. The ex-
pression u = a · b is computed in basic blocks 3
and 4.

w = 2*u + t

w = t
x = t
y = u

x = a
u = a*b

f (&a, &b)
t = a/b

43

5

2

1

(b) After global common subexpression elimina-
tion. The expression u = a · b is moved to basic
block 2.

x = a

u = a*b
t = a/b
f (&a, &b)

x = t
y = u

w = t

w = u + u + t

43

5

2

1

(c) After loop invariant code motion and weak
strength reduction. The expression u = a · b is
moved out of the loop and 2 · u is replaced with
u + u. Now the loop does not have any multiply
operations.

Figure 4.3 Example to illustrate the impact of partial redundancy elimination on the usage of func-
tional units

idle in the loop. Another optimization, known as partial redundancy elimination (PRE), makes

the expression a · b fully redundant in basic block 5 by introducing the statement u = a · b in basic

53

www.manaraa.com

block 4 (Figure 4.3(a)). GCSE can now move the expression a · b to basic block 2 (Figure 4.3(b)).

When code motion and weak strength reduction (described in Section 4.2.1.3) are performed sub-

sequently, this expression is moved out of the loop, thereby making even the multiplier idle in the

loop (Figure 4.3(c)). It should be noted, however, that GCSE and PRE are not always performed

by the compiler because the former may increase register pressure, while the latter may increase

code size. If the IEEE or ISO floating point precision rules are relaxed during compilation, such

arithmetic transformations can be applied to floating point types as well.

4.2.1.2 Loop Optimizations

The optimizations described in this category are performed on loops to remove redundant opera-

tions from the body of the loops. Figure 4.4 illustrates how loop invariant code motion and strength

reduction on induction variables are effective in doing so, thereby improving power gating oppor-

tunities in the loops of a procedure. In Figure 4.4(a), the expression c[i] ∗ k evaluates to the same

value in every iteration of the inner for-loop. Therefore, this computation is moved out of that loop

and a new temporary t is used to hold the result of that computation, which is subsequently used

in the inner for-loop. Therefore, a sleep instruction, putting the multiplier to sleep, can be inserted

before the entry of the inner for-loop. In Figure 4.4(b), the result of the computation i∗ k across the

iterations of the loop form an arithmetic progression with a common difference of k. This is because

k is constant across all the iterations of the loop, while i gets incremented by 1 in each iteration of

the loop. The transformed code, therefore, does not have any multiply operation and the multiplier

can be turned off at the entry of the loop.

4.2.1.3 Machine Dependent Optimizations

The primary purpose of these optimizations is to improve the pipeline efficiency by perform-

ing local code transformations with the knowledge of the target machine. Figure 4.5 illustrates

two peephole optimizations that eliminate the integer multiply instruction from a code sequence,

thereby increasing opportunities for power gating. Figure 4.5(a) describes the generation of com-

plex addressing operands while performing a load operation. The sequence of instructions on the

54

www.manaraa.com

Original code Transformed code

for (i = 0; i < n; i++) for (i = 0; i < n; i++)
for (j = 0; j < n; j++) {
a[j] = b[j]+ c[i]∗ k; t = c[i]∗ k;

/*Turn off Multiplier */
for (j = 0; j < n; j++)
a[j] = b[j]+ t;
}

(a) Loop invariant code motion

Original code Transformed code

for (i = 0; i < n; i++) t = 0;
a[i] = b[i]+ i∗ k; /*Turn off Multiplier */

for (i = 0; i < n; i++)
{
a[i] = b[i]+ t;
t = t + k;
}

(b) Strength reduction

Figure 4.4 Examples of loop optimizations that improve the opportunities for power gating. In
(a), the multiply operation is moved from the inner for-loop to the outer one. The multiplier can
now be turned off at the entry of the inner for-loop. In (b), the multiply operation is eliminated in
the for-loop by replacing it with an equivalent series of add operations. If IEEE or ISO floating
point precision rules are relaxed, strength reduction can also be applied to eliminate floating point
multiply operations.

left column (to load an element from an array storing elements of size 4 bytes) is replaced by a

single instruction on the right in which the base address and the offset can be directly specified.

Figure 4.5(b) illustrates weak strength reduction [51, 58] in which multiplication with a constant

operand (119) may be replaced by a sequence of addition, subtraction, and shift instructions. This

transformation, however, should be carried out only if it is estimated during compilation that it

55

www.manaraa.com

Original code Optimized code

mov r1, #4 ldr r3, [r0, r1, asl #2]
mul r3, r2, r1
add r1, r0, r3
ldr r3, [r4]

(a) Loads with complex addressing

Original code Optimized code

mov r1, #119 mov r1, r2, asl #4
mul r3, r2, r1 add r1, r1, r2

mov r3, r1, asl #3
sub r3, r3, r1

(b) Weak strength reduction

Figure 4.5 Examples of machine dependent optimizations in ARM that can improve opportunities
for power gating. In the examples above, the multiply instructions are eliminated in the optimized
codes.

would be beneficial (in terms of both performance and power) to do so considering the overhead of

fetching the extra instructions and executing them.

4.2.2 Interprocedural Optimizations

These optimizations rely on the analyses performed by the compiler by considering the entire

compilation unit as a whole. All the procedures are analyzed and a call graph is created. In a

call graph, each vertex represents a procedure and an edge (u,v) implies that there is a call from

procedure u to procedure v. Interprocedural analyses are performed on the call graph to compute

the set of variables and memory locations that are modified and referenced by each procedure. This

makes it possible for more effective intraprocedural optimizations to be performed. We discuss two

56

www.manaraa.com

int scale(int s, int* x)
{
sum = 0;
/*Turn off Int. Mult. */
for (i = 0; i < n; i++)
sum = sum+ x[i];

/*Turn on Int. Mult. */
return (s*sum);
}

void foo(void)
{
. . .
for (i = 0; i < m; i++)
b[i] = scale(5,a[i]);

. . .
}

(a) Original source in which the procedure,
scale(), performs a multiply operation on its
first formal argument, s and the sum of the ele-
ments in the array pointed to by x.

int scale(int* x)
{
/*Turn off Int. Mult. */
sum = 0;
for (i = 0; i < n; i++)

sum = sum+ x[i];
return ((sum� 2)+ sum);
}

void foo(void)
{
. . .
for (i = 0; i < m; i++)

b[i] = scale(a[i]);
. . .
}

(b) After interprocedural constant propagation is
performed on (a), the first formal argument is re-
moved and the arugment s is replaced with the
constant value of 5 in the return statement. Weak
strength reduction eliminates the multiply opera-
tion.

void foo(void)
{
. . .
/*Turn off Int. Mult. */
for (i = 0; i < m; i++)
{
sum = 0;
for (j = 0; j < n; j++)
sum = sum+a[i][j];

b[i] = (sum� 2)+ sum;
}
. . .
}

(c) After procedure inlining is performed on (a),
the for loop within the procedure scale() be-
comes a nested loop in the for loop in callee pro-
cedure foo(). Weak strength reduction elimi-
nates the multiply operation. The instruction to
turn off the integer multiplier can now be inserted
before entering the outer for-loop.

Figure 4.6 Example illustrating the impact of interprocedural optimizations on power gating oppor-
tunities of the integer multiplier

57

www.manaraa.com

optimizations in this category, interprocedural constant propagation and procedure inlining, and

their impact on power gating (Figure 4.6).

The original code (Figure 4.6(a)) has two procedures, scale() and foo(). The first procedure

computes the sum of the elements in the array pointed to by its formal argument, x, and then scales

the computed value by its second formal argument, s. The second procedure calls scale() for every

row of an (m× n) array, a, with a constant scaling parameter, 5, and stores the values returned by

scale() in array, b. In this case, the integer multiplier can be turned off at the entry of the for-loop

and turned back on at the exit of the for-loop in scale(). However, since scale() is called m

times, the performance and energy overheads involved in power gating increases as m increases.

Figure 4.6(b) shows the interprocedural constant propagation technique conceptually. The pro-

cedure definition for scale() is reduced to one with only a single argument. The argument s in

the body of the procedure is replaced with the constant 5. Weak strength reduction can now replace

(5 · sum) with ((sum� 2)+ sum), thereby eliminating the multiply operation completely. Interpro-

cedural constant propagation is beneficial in the cases where macros are used in the source code that

assume constant values after preprocessing. When procedure inlining is performed (Figure 4.6(c)),

the body of scale() is integrated into foo(), following which the multiply can be replaced with

shift and add operations. Thus, only a single sleep instruction is required at the entry of the outer for-

loop putting the integer multiplier to sleep. This significantly reduces the performance and energy

overheads in implementing power gating.

4.3 Compiler-Directed Power Gating

Figure 4.7 describes the framework for compiler-directed power gating of functional units along

with code optimizations. A compiler usually has multiple intermediate representations (IR) to repre-

sent a program during the entire compilation process. The source code of an application is translated

into a high-level IR by the compiler front-end. High level tranformation, which include interproce-

dural optimizations, are performed at the high-level IR. Most of the machine-independent intrapro-

cedural optimizations, like dominator and loop optimizations, are performed on an intermediate-

level IR. Finally, the machine-dependent optimizations are performed on a low-level IR. All the

58

www.manaraa.com

(constant propagation,
function inlining)

Machine−Dependent Optimizations

Loop Optimizations

induction variable optimizations)
(loop invariant code motion,

Insertion of power
gating instructions

(instruction scheduling,
peephole optimizations)

(dead code removal, algebraic

Interprocedural Optimizations

reassociation, redundancy relimination, etc.)

Dominator Optimizations

IR Translation

Code Generation

files
Source

Figure 4.7 Framework for compiler-directed power gating of functional units with code optimiza-
tions

optimizations are organized as compiler passes which can be selectively turned ON or OFF with the

help of optimization flags specified during compilation. The insertion of the sleep instructions is

performed after all of the code optimizations have been performed and is, therefore, shown as part

of machine-dependent optimizations. After code generation, the assembly code is assembled and

linked to generate a machine executable that is simulated on a cycle accurate simulator for perfor-

mance and leakage energy evaluation. In this work, we use the GNU Compiler Collection (GCC

59

www.manaraa.com

4.2.1) [54], GNU Binary Utilities (Binutils 2.17) [59], and GNU C Library (Glibc 2.3.6) [60] to

build the compiler toolchain for the ARM Linux platform. The Simplescalar ARM distribution [55]

is used to perform cycle-accurate simulation for performance and power calculations.

The internal compiler pipeline in GCC [61] is shown in Figure 4.8. GCC uses three intermediate

representations - GENERIC, GIMPLE, and RTL. The compiler front end parses the C source code

and converts it into GENERIC representation. This is lowered into GIMPLE representation, where

Pass to insert power

is added here
gating instructions

Back End

Middle End

Front End

Tree
Optimizations

RTL
Optimizations

Assembly

C

GENERIC

GIMPLE

RTL

Figure 4.8 GCC Compiler Pipeline [62]. The pass to insert power gating instructions is added as an
RTL optimization pass.

all tree-based code transformations are performed. Lower level optimizations, including all or most

of the machine-dependent optimizations (instruction scheduling, peephole optimizations etc.), are

performed at the RTL level. The control flow graph (CFG) information for a procedure is retained

till late in the RTL passes. Since insertion of power gating instructions into the code requires its

control flow information, the pass to do so is added right before the CFG is purged and the procedure

is described only as an instruction list.

60

www.manaraa.com

4.3.1 Architecture Support for Power Gating

The architecture support for power gating is based on the ARM processor architecture and

is proposed in [37]. The instruction set architecture (ISA) provides an explicit sleep instruction,

whose argument is an immediate integer that encodes the list of functional units that are to be

deactivated. The ISA, however, does not provide any explicit wakeup instructions. The activation

of the functional units is carried out automatically by the decode logic of the ARM pipeline for

those functional units that are needed by the decoded instruction. The processor core has an integer

ALU, which cannot be power gated; and a barrel shifter, an integer multiplier (IMUL), a floating

point adder (FADD), a floating point multiplier (FMUL), and a floating point divide and square

root unit (FDSQ), all of which can be power gated. The library of functional units with power

gating support are designed for 1 cycle wakeup latency for a clock period of 10 ns (100 MHz clock)

and are characterized for latency and power [37]. The barrel shifter, however, is not equipped

with any power gating support in this work because of the frequent usage of shift instructions in

the code. Shift instructions are generated during strength reduction of multiply operations with

constant operands [51] and during generation of load and store instructions with complex addressing

modes [54].

As shown in Figure 4.9, a sleep control register (SCR), comprising of SR flip-flops, is added

to the decode logic of the ARM core. The outputs of these flip-flops drive the gates of the sleep

transistors of the functional units. Since NMOS transistors are used for the sleep transistors, a ‘0’

at their gate switches them OFF while a ‘1’ switches them ON. In Figure 4.9, the contents of the

SCR indicate that while IMUL and FDSQ are in active mode, FADD and FMUL are in sleep mode.

When a sleep instruction is decoded, signal slp is asserted and bits 11-8 of the instruction are used

to reset the flip-flops. When an instruction, requiring a particular functional unit, is decoded, a

wakeup signal (wkp *) is asserted to set the flip-flop. The wakeup signals are datapath flags that are

generated by the decode logic to latch the operands in the input latches of the functional units.

The rst input to each flip-flop is gated with the output of that flip-flop to prevent unnecessary

switching at the output of the corresponding AND gate. Therefore, the switching at the outputs of

the AND gates and the SR flip-flops carry out the switching ON or OFF of the functional units. If

61

www.manaraa.com

Sleep control
for FP−DSQT

Sleep control
for FP−Mult

Sleep control
for FP−Add

Sleep control
for Int−Mult

slp

0

1

0

1

wkp_fdsq set

rst
instr[11]

q

wkp_fmul set

rst
instr[10]

q

wkp_fadd set

rst
instr[9]

q

wkp_imul set

rst
instr[8]

q

clk

Figure 4.9 Gate level schematic of the Sleep Control Register (SCR). SCR is the extension to the
ARM decode logic that enables the support to power gate functional units.

the output of an AND gate switches, it will switch the content of the corresponding flip-flop from

‘1’ to ‘0’. The functional unit whose sleep transistors the AND gate is controlling is, thereby,

put to sleep. Similarly, if a wakeup (wkp *) signal is asserted and the output of the corresponding

flip-flop switches from ‘0’ to ‘1’, the functional unit whose sleep transistors it is controlling is

woken up from sleep. Thus, the dynamic power overhead involved in the implementation of the

SCR logic is linearly proportional to the number of times the functional units are switched ON and

OFF. However, this overhead power is negligible when compared to the power overhead involved

in activation and deactivation of the functional units.

62

www.manaraa.com

0F0 F X X Arg7

Machine code format of sleep instruction

Assembly format of sleep instruction
slp <Arg> /* 4 bit argument */

31 27 23 19 15 11 7 3 0

Arg bit 0 : Int−Mult
Arg bit 1 : FP−Add
Arg bit 2 : FP−Mult
Arg bit 3 : FP−DSQT

Figure 4.10 Assembly and machine code formats of the sleep instruction

The assembler support for translating the sleep instructions into machine code is added to the

GNU ARM assembler, which is part of the Binutils package. The format of the machine code for the

sleep instruction is chosen from the domain of exceptional opcodes described in the ARM reference

manual and is shown in Figure 4.10. The assembly opcode for the sleep instruction is slp. It takes a

four-bit immediate integer as an argument that encodes the list of the functional units that are to be

deactivated. As shown in the figure, bits 0-3 of the immediate integer argument are for deactivating

IMUL, FADD, FMUL, and FDSQ, respectively. The machine code for the slp instruction has bits

7-0 as ‘F0’ and bits 31-20 as ‘07F’. Instruction bits 11-8 are reserved for the four-bit immediate

integer argument that is passed to the sleep instruction. The definitions of the semantics of the slp

instruction and the extensions to the semantics of the rest of the instructions (wakeup logic) are

added to the machine description file. The machine definition for the Simplescalar ARM port maps

each instruction to a functional unit in the processor core. This information is used to implement

the wakeup logic. The ARM processor configuration used is that of the StrongArm processor core

and is tabulated in Table 3.3.

4.3.2 Insertion of Sleep Instructions

The sleep instructions are inserted at discrete regions in a procedure. These regions are the

entry block of the procedure itself and the basic blocks that are predecessors to the entry blocks of

the loops in that procedure. Due to this reason, the pass to insert power gating instructions, first

identifies the loops in the procedure, and then probes them for the usage of functional units. GCC

63

www.manaraa.com

provides a comprehensive library for representing loops and analyzing them. A loop tree is defined

as a tree in which each node represents a loop in the procedure and the children of a node, say L,

represent the loops immediately contained inside L. The loop tree captures the nesting structure of

the loops within the procedure. The important attributes of a loop involved in performing the task

of insertion of sleep instructions are loop header, loop latch, and loop body. Figure 4.11 illustrates

BodyLatch
Loop

Loop Header

Loop

Latch Tail

Figure 4.11 Components of a loop

these components. Loop header is the basic block that forms the entry block for the loop. Loop

latch is a back edge that connects a basic block from inside the loop to the loop header. Finally,

loop body is the set of basic blocks that are dominated by its header, and are reachable from its latch

against the direction of edges in CFG. The shaded region in Figure 4.11 indicates the loop body.

Natural loops, defined as the loops that have one loop header and possibly multiple loop latches, are

the most commonly occurring loop structures in the C programming language and are, therefore, of

interest to us.

Algorithm 4 toplevel-driver()
1: Construct the call graph
2: Perform interprocedural optimizations
3: for each procedure x ∈ call graph in postorder sequence do
4: expand (x)
5: end for

Algorithms 4-7 describe the technique of inserting power gating instructions during the com-

pilation process. The top level procedure that drives the entire compilation process is described in

Algorithm 4. First, the call graph is constructed after the source file is parsed. Then, interproce-

64

www.manaraa.com

Algorithm 5 expand(f)
1: Perform intraprocedural optimizations on f
2: pgi-insert (f)
3: Output the assembly code for f

Algorithm 6 pgi-insert(f)
1: /* Gather functional usage information */
2: FU(f)←Φ
3: for each basic block b ∈ CFG do
4: FU(b)←Φ
5: for each instruction i ∈ b do
6: if i is a CALL instruction then
7: FU(b)← usage (callee)
8: else
9: FU(b)← FU(i)

10: end if
11: end for
12: FU(f)← FU(f)∪FU(b)
13: end for
14: Compute the loop hierarchy tree, L, in f
15: for each loop l ∈ L do
16: FU(l)←∪FU(b),∀ b ∈ l
17: end for
18: /* Insert power gating instructions */
19: for each region r ∈ L in preorder sequence do
20: if FU(r)⊂ FU(parent(r)) then
21: /* r needs fewer functional units than parent(r) */
22: Insert sleep(FU(parent(r)−FU(r))) at the entry of r
23: end if
24: end for

65

www.manaraa.com

dural analysis and optimizations are performed across the procedures. Finally, the procedures are

expanded in the postorder sequence of the vertices. This is done to enable transfer of data from

a callee procedure to its caller, which may lead to better optimization opportunities during code

generation of the caller procedure. From the perspective of the task of inserting power gating in-

structions, this ensures that a callee procedure is inspected for power gating opportunities before any

of its callers. Algorithm 5 describes the expansion steps for a procedure, which involve perform-

ing the desired intraprocedural optimizations, inserting power gating instructions, and generating

its assembly code. Algorithm 6 describes the technique of inserting sleep instructions within a pro-

cedure. The instructions in a basic block are inspected (lines 3-13) to compute the functional unit

usage of that basic block. If an instruction is not a CALL instruction, then its functional unit usage

is computed by parsing the instruction expression. Otherwise, the value returned by the procedure

usage() (Algorithm 7) is used. The loop tree is computed (line 14) and the functional unit usage

of all the loop bodies are determined (lines 15-17). Next, the loop tree is traversed (lines 18-24) in

preorder sequence for regions whose entries can be gated with sleep instructions. The root of the

loop tree represents the entire procedure.

Algorithm 7 usage(f)
1: /* lookup the call graph for f */
2: if f ∈ call graph then
3: return FU(f)−∪FU(l),∀ loop l ∈ f
4: end if
5: /* f is a standard library procedure */
6: return functional usage based on policy P1, P2, or P3

Algorithm 7 describes the routine that returns a set of functional units corresponding to the

callee procedure symbol that is passed to it as an argument. If the callee procedure is part of the

compilation unit then the call graph has an entry for it. In this case, the functional unit usage of

the region of the code that is not part of any loops in the callee is returned. This is because any

functional unit that is needed in this region will be needed as many times as the procedure is called.

If the callee has loops, then those loops already have sleep instructions inserted at their entries which

turn off functional units that are not required within their bodies. Finally, if it is determined that

the callee procedure does not belong to the compilation unit, then it must be a C standard library

66

www.manaraa.com

call and the return value is determined by the policy that is used to handle the C standard library

routines. This is described the next subsection. Although the technique described here does not

use dynamic profiling information of the applications to direct the insertion of sleep instructions

in the code, the techniques that do so ([33, 37]) can be readily incorporated into the compilation

framework described in this work.

4.3.3 Policies for Handling C Standard Library Routines

The most frequently used standard library routines in the benchmarks from MediaBench and

MiBench are those defined in stdio.h, stdlib.h, string.h, and math.h. Based on the Glibc

implementation of the C standard library, while the routines defined in math.h use FP units com-

monly, those defined in the first three headers do not use any FP units (except the string to FP type

conversion routines such as atof(), etc.). Moreover, a large number of the low level file I/O rou-

tines, memory allocation/deallocation routines, and string manipulation routines do not even use the

integer multiplier. Considering this knowledge about the standard library routines, in this work, we

apply three policies to handle them. These policies are as follows:

1. P1 - It is assumed that none of the standard library routines use any of the functional units.

2. P2 - It is assumed that the routines belonging to the math library use all the functional units,

whereas the other routines do not use any functional units.

3. P3 - The routines defined in the math library are profiled for their functional unit usage and a

lookup table is created with this information. This lookup table is referred to during the power

gating stage. For the rest of the routines, it is assumed that they do not use any functional units.

4.3.4 Proposed Leakage Aware Compilation Flow

Based on the work and discussions in the preceding subsections, we propose a leakage aware

compilation flow that is shown in Figure 4.12. The application source, which is comprised of one

or more compilation units (set of procedures that the compiler generates code for in a single run),

is the input to this flow. A call graph is constructed for each compilation unit, which is inspected

67

www.manaraa.com

Is p
float intensive?

Turn on floating
point optimization flags

Yes

No

Perform simple algebraic
optimizations (PA)

Does a loop
exist that uses

an FU?

Perform code
motion on loops (PB)

Does a loop
exist that still uses

an FU?

Perform GCSE
and PRE followed by

code motion (PC)

Does a loop
exist that has a

multiply?

Perform induction
variable optimizations (PD)

Perform peephole
optimizations (PE)

Perform instruction
scheduling (PF)

Yes

Yes No

No

No

Yes

Pick the next uninspected
 procedure, p, in G

Is p called
exactly once?

Update G; Mark p to be
inlined into its caller(s)

Is there an
FU that is not

used in p ?

Does p
satisfy inline

params?

Does p
satisfy inline

params?

Yes

No

Yes

No

Yes Yes

NoNo

Are all the
procedures in
G inspected
for inlining?

Yes

No

Construct call graph, G,
of a compilation unit

of the application

Pick the next procedure, p,
in postorder sequence of G

Insert sleep
instructions

Generate and output
assembly code

Is assembly
generated for all the

procedures in
G?

No

Yes

Exit

Start

Interprocedural
Optimizations

Dominator
Optimizations

Machine-dependent
Optimizations

Loop
Optimizations

Application
source code

Figure 4.12 Proposed compilation flow to generate leakage optimized code with compiler-directed
power gating. Each vertex in a call graph is a procedure, which is decribed as a control flow
graph. Each vertex in a control flow graph is a basic block. The regions enclosed in grey rectan-
gles correspond to the optimization phases shown in the framework in Figure 4.7. The labels for
the intraprocedural optimization passes, PA−F , are used to annotate the optimization configurations
studied in the experimental section (Table 4.4).

68

www.manaraa.com

for procedure inlining. The decision to inline a procedure primarily depends on its impact on the

increase in code size. GCC has builtin heuristics to decide if a procedure should be inlined or not.

The relevant parameters that control these heuristics and their default values are tabulated in Table

4.2. A procedure that is declared static and is called only once in the compilation unit is always

considered for inlining because it is not likely to impact the code size. However, for the rest of the

procedures, only those procedures that have at least one functional unit that can be power gated in

its body are considered to be inlined. As mentioned earlier in Section 4.2.2, this has a significant

potential to reduce the number of overhead sleep instructions during program execution. Although

not explicitly shown in the figure, interprocedural constant propagation is also performed during

this stage.

Table 4.2 Procedure inlining parameters. [54]

Parameter Description Value
max-inline-insns-auto Size of procedures considered for inlining in num-

ber of instructions (counted in GCC’s internal rep-
resentation)

90

large-function-insns Limit specifying large procedures in number of
instructions (counted in GCC’s internal represen-
tation)

2700

large-function-growth Relative growth of large procedures after inlining
with respect to original size

200%

inline-call-cost Relative cost of a call instruction compared to a
simple arithmetic instruction (e.g. add)

16

Once all the procedures are inspected for procedural inlining, they are picked in a postorder

sequence of the call graph (explained earlier in Section 4.3.2) for intraprocedural optimizations and

assembly code generation. The decision to perform floating point optimizations is taken based on

the knowledge of the applications. If an application has floating point operations, then the IEEE or

ISO floating point precision rules are relaxed so that arithmetic optimizations can be performed on

floating point data types as well. Simple dominator-based arithmetic optimizations like dead code

elimination, constant and copy propagation, local subexpression elimination and full redundancy

elimination are performed. Following this, if there are loops in which one of more functional units

are being used, then code motion is performed on the loop bodies. As mentioned earlier in Section

69

www.manaraa.com

4.2.1.1, Global subexpression elimination (GCSE) and partial redundancy elimination (PRE) are

techniques that always may not result in performance optimized code because the former increases

register pressure, while the latter has the potential to increase code size. However, these optimiza-

tions may aid code motion in removing requirements of functional units out of loops (illustrated in

Section 4.2.1) and, therefore, are evaluated if code motion alone is not entirely effective in removing

computations out of the loops. Induction variable optimizations are performed further if there are

any multiply operations in the loops (for both integer and floating point types). Finally, the backend

optimizations, peephole transformations, and instruction scheduling are performed before inserting

sleep instructions and finally generating assembly code.

4.4 Experimental Setup and Results

For the purpose of experimentation, we report results for the following benchmarks from Mibench

and Mediabench suites:

• Susan (Smallest Univalue Segment Assimilating Nucleas) is a set image processing bench-

marks from the automotive category in MiBench. It comprises of three programs - edge

detection SusanE, corner detection SusanC, and image smoothing SusanS.

• Epwic (Embedded Predictive Wavelet Image Color) is part of MediaBench which implements

a wavelet image encoder (Epwic) and a decoder (Unepwic).

• Mpeg2 (Moving Pictures Experts Group) benchmarks comprise of Mpeg2E and Mpeg2D,

which are video encoding and decoding programs, respectively. These benchmarks are also

part of the Mediabench suite.

All the benchmarks described above, except SusanS are floating point benchmarks, with Mpeg2D

having the least composition of floating point operations (less than 0.5% in C0 configuration).

Table 4.3 tabulates, for each benchmark built in C0, the number of procedures and the number

of simulation cycles reported by Simplescalar-ARM for the StrongARM configuration. All the

experiments were performed on a Linux server with four 2.6 GHz AMD processors and 16 GB

70

www.manaraa.com

Table 4.3 Benchmark details. (in C0 configura-
tion)

Benchmark
Number of Number of
procedures cycles (Millions)

SusanC 19 4.05
SusanE 19 8.13
Epwic 130 1745.60
Unepwic 130 179.69
Mpeg2E 95 549.02
Mpeg2D 114 28.89

The configurations are described in
Table 4.4

RAM running Red Hat Enterprise Linux AS release 4. The code modifications to GCC, including

the pass to insert sleep instructions, resulted in less than 1300 additional lines in the source code.

The simulation time of the benchmarks with Simplescalar ranged from a few seconds, for SusanC

benchmark, to several minutes for Epwic benchmark.

4.4.1 Optimization Configurations

Table 4.4 Optimization configurations

Optimization
Description

Pass Labels
Label wrt Figure 4.12

C0 Base configuration (only machine specific in-
struction scheduling is performed)

PF

C1 C0 + Machine dependent peephole optimizations PE−F

C2 C1 + All dominator optimizations (dead code
elimination, copy and constant propagation, full
and partial redundancy elimination, local and
global common subexpression elimination)

PA, PE−F

C3 C1 + Simple dominator optimizations (except
GCSE and PRE) + Loop invariant code motion

PA−B, PE−F

C4 C3 + All dominator optimizations + Loop invari-
ant code motion

PA−C, PE−F

C5 C4 + Induction variable optimizations PA−F

The optimizations in each of the configurations above may be performed with inter-
procedural and floating point optimizations

71

www.manaraa.com

Table 4.4 describes the various optimization configurations defined for the purpose of experi-

mentation in this work. The third column of this table lists the labels of the intraprocedural opti-

mization passes from Figure 4.12 for each of these configurations. C0 is the base configuration in

which only machine specific instruction scheduling is performed. In C1, machine dependent peep-

hole optimizations are also enabled. In C2, all dominator optimizations are performed along with

those in C1. In C3, simple dominator optimizations (excluding GCSE and PRE) and loop invari-

ant code motion are performed along with those in C1. More aggressive dominator optimizations,

including GCSE and PRE, are added to C3 to define C4. In C5, induction variable optimizations

are performed in addition to the ones performed in C4. All the intraprocedural optimizations are

performed after interprocedural optimizations are performed except for the Susan benchmarks. The

floating point arithmetic optimization flag -ffast-math is turned on for all benchmarks except

SusanE and Mpeg2D.

4.4.2 Results

The library of functional units developed in [37] is used for the leakage energy calculations for

all the benchmarks. The leakage savings for the units in sleep mode is about 50%, which indicates

Table 4.5 Description of metrics

Metric label Description
num-cyc-nopg Number of simulation cycles without any sleep instruc-

tions
num-cyc-pg Number of simulation cycles with sleep instructions

cyc-ovh Performance penalty incurred in executing the
sleep instructions (in percentage), computed as
(num-cyc-nopg/num-cyc-pg)−1

unit-bsy Number of cycles for which unit is busy
unit-engy-nopg leakage energy for unit without power gating
unit-engy-pg leakage energy for unit with power gating

unit-sav Percentage savings in leakage energy in unit due to power
gating, computed as 1− (unit-engy-pg/unit-engy-nopg)

total-sav Percentage savings in total leakage energy across
all units due to power gating, computed as

1−
(

∑∀units unit-engy-pg/∑∀units unit-engy-nopg
)

72

www.manaraa.com

that the theoretical upper bound on the maximum achievable savings is 50%. Table 4.5 enumerates

the metrics that are computed and reported in this section to demonstrate the effectiveness of power

gating. All the results described next are reported for policy P3 used to handle the C standard

library routines. Also, the legend ‘num-cyc’ in all the plots indicates ‘num-cyc-nopg’, as described

in Table 4.5. The FP optimizations are also turned on for all the benchmarks in configurations

C1-C5.

4.4.2.1 Susan Benchmarks

Figures 4.13(a) and 4.13(b) show the statistics for SusanE. For this benchmark, the integer mul-

tiplier is again the most frequently used unit (busy for 17.3% of the cycles in C0), whereas the FP

units are busy for roughly 1% of the cycles. Again, in C2-C5, large leakage savings are observed for

the integer multiplier when compared to those in C0. In these configurations, the savings increase

by 9X (from 3.3% to almost 30%). This can be attributed to the fact that the number of busy cycles

for this unit reduces by 4X (0.24 vs. 1.00) in C2 and by almost 5X (0.21 vs. 1.00) in C5. In C5,

strength reduction on induction variables is performed which is very effective in replacing multiply

operations with equivalent add or subtract operations. The savings in the FP units are almost uni-

form across all the configurations. The total leakage savings across all the functional units increases

by less than 10% because the leakage component of the integer multiplier is a small fraction of those

of the FP units.

For SusanC, the integer multiplier is busy 14% of the cycles, whereas the FP units are used

in less than 2% of the cycles in C0. In the rest of the configurations (all built with floating point

optimizations), significant improvements in the leakage savings are observed for the integer multi-

plier and the FP divider. Figures 4.14(a) and 4.14(b) show the statistics for SusanC. In C2-C5, the

number of busy cycles for the integer multiplier drops by 8X (0.12 vs. 1.00) to 12X (0.08 vs. 1.00)

giving an increase in savings by 7% to 2.1X. For the FP divider, the leakage savings improve by

more than 2.2X in configurations C3-C5. This is because the number of busy cycles for this unit

drops by almost 6X (0.17 vs. 1.00). The savings in the rest of the units are uniform over all the

optimization configurations. The total leakage savings (across all the functional units) is 1.7X than

73

www.manaraa.com

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

i
m
u
l
-
s
a
v

t
o
t
-
s
a
v

c
y
c
-
o
v
h

N
o
r
m
a
l
i
z
e
d

v
a
l
u
e

w
r
t

C
0

C1
C2
C3
C4
C5

(a) Leakage savings in the integer multiplier and across all the functional units along with the
performance overhead across the optimization configurations

 0

 0.2

 0.4

 0.6

 0.8

 1

n
u
m
-
c
y
c

i
m
u
l
-
b
s
y

N
o
r
m
a
l
i
z
e
d

v
a
l
u
e

w
r
t

C
0

C1
C2
C3
C4
C5

(b) Total number of execution cycles (without sleep instructions) and the number of busy cycles
for the integer multiplier across the optimization configurations

Figure 4.13 Leakage savings and sleep overhead for SusanE

that in C0. The overhead in terms of the number of extra cycles executed increases by 1.3X in C5

but is below 0.6% of the total numer of execution cycles. The number of execution cycles for this

benchmark reduces by 20% in C2-C5 wrt that in C0. Figure 4.15 illustrates the impact of weak

strength reduction on the leakage savings achieved for the integer multiplier across all the optimiza-

74

www.manaraa.com

 0

 0.5

 1

 1.5

 2

 2.5

i
m
u
l
-
s
a
v

f
d
s
q
-
s
a
v

t
o
t
-
s
a
v

c
y
c
-
o
v
h

N
o
r
m
a
l
i
z
e
d

v
a
l
u
e

w
r
t

C
0

C1
C2
C3
C4
C5

(a) Leakage savings in the integer multiplier, FP divider, and across all the functional units along
with the performance overhead across the optimization configurations

 0

 0.2

 0.4

 0.6

 0.8

 1

n
u
m
-
c
y
c

i
m
u
l
-
b
s
y

f
d
s
q
-
b
s
y

N
o
r
m
a
l
i
z
e
d

v
a
l
u
e

w
r
t

C
0

C1
C2
C3
C4
C5

(b) Total number of execution cycles (without sleep instructions), the number of busy cycles for
the integer multiplier and the FP divider across all the optimization configurations

Figure 4.14 Leakage savings and sleep overhead for SusanC

tion configurations. For C5, the savings increase by almost 2X when weak strength reduction is

performed.

SusanS is an integer benchmark that spends almost the entire time in a loop performing integer

multiplications on memory elements. Therefore, during the entire time, the integer multiplier is

75

www.manaraa.com

 0

 2

 4

 6

 8

 10

 12

 14

C
0

C
1

C
2

C
3

C
4

C
5

L
e
a
k
a
g
e

e
n
e
r
g
y

s
a
v
i
n
g
s

(
%
)

NoWSR
WSR

Figure 4.15 Impact of weak strength reduction on leakage savings of the integer multiplier for
SusanC. NoWSR indicates that no weak strength reduction is performed.

awake, whereas the floating point units are asleep. Interprocedural optimizations are not effective

on any of the benchmarks from the Susan set owing to the non-modular description of the source

code. Therefore, interprocedural optimizations are not performed on them.

4.4.2.2 Epwic Benchmarks

Figure 4.16 shows the plots for Epwic benchmark. In this benchmark, the FP divider and FP

multiplier tradeoff leakage savings with each other as the various optimizations are performed.

The number of busy cycles for the FP divider drops by 10%-16% in C2-C5, while that for the FP

multiplier increases by 5%-6%. This gets reflected in the leakage savings for these two units. While

the savings in the FP divider increases by 16% (28% vs. 32.5%) in C5, the savings for the FP

multiplier decreases by 5% (30% vs. 28.5%). Since the leakage in FP divider is almost twice as

much as that in the FP multiplier, increased savings in FP divider contribute towards higher total

savings across all the units (which increases by 5%-9%). The performance improves steadily as

we go from C1-C5IPO (C5IPO is C5 configuration with interprocedural optimizations). The cycle

overhead in C5IPO reduces by more than 20% compared to that in C0. Since Unepwic shares

76

www.manaraa.com

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

f
m
u
l
-
s
a
v

f
d
s
q
-
s
a
v

t
o
t
-
s
a
v

c
y
c
-
o
v
h

N
o
r
m
a
l
i
z
e
d

v
a
l
u
e

w
r
t

C
0

C1
C2
C3
C4
C5
C5IPO

(a) Leakage savings in the FP multiplier, FP divider, and across all the functional units along
with the performance overhead for various optimization configurations. C5IPO indicates that
interprocedural optimizations are performed in C5

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

n
u
m
-
c
y
c

f
m
u
l
-
b
s
y

f
d
s
q
-
b
s
y

N
o
r
m
a
l
i
z
e
d

v
a
l
u
e

w
r
t

C
0

C1
C2
C3
C4
C5
C5IPO

(b) Total number of execution cycles (without sleep instructions) and the number of busy cycles
for the FP multiplier and FP divider for the optimization configurations

Figure 4.16 Leakage savings and sleep overhead for Epwic

majority of the source files with Epwic, similiar tradeoff is observed between the FP divider and the

FP multiplier as in Epwic. However, the leakage savings in the FP adder and the FP multiplier are

77

www.manaraa.com

much lower (8% and 12%) than those in Epwic. Therefore, the total savings in Unepwic is lower

when compared to those in Epwic.

4.4.2.3 Mpeg2 Benchmarks

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

f
a
d
d
-
s
a
v

f
m
u
l
-
s
a
v

t
o
t
-
s
a
v

c
y
c
-
o
v
h

N
o
r
m
a
l
i
z
e
d

v
a
l
u
e

w
r
t

C
0

C1
C2
C3
C4
C5
C5IPO

(a) Leakage savings in the FP adder, FP multiplier, and across all the functional units
along with the performance overhead for various optimization configurations. C5IPO
indicates that interprocedural optimizations are performed in C5

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

n
u
m
-
c
y
c

f
a
d
d
-
b
s
y

f
m
u
l
-
b
s
y

N
o
r
m
a
l
i
z
e
d

v
a
l
u
e

w
r
t

C
0

C1
C2
C3
C4
C5
C5IPO

(b) Total number of execution cycles (without sleep instructions) and the number of
busy cycles for the FP adder and FP multiplier for the optimization configurations

Figure 4.17 Leakage savings and sleep overhead for Mpeg2Encode

78

www.manaraa.com

In Mpeg2E, the FP multiplier is the most frequently used unit (busy for 4.4% of the total cycles

in C0), whereas the FP divider is the most infrequently used unit (busy for less than 0.01% in C0).

The integer multiplier and FP adder are busy for 3.3% and 2.6% of the cycles in C0. When interpro-

cedural optimizations are performed in C5 (CFIPO), the leakage savings in the FP adder increases

by almost 14% (36% compared to 41%). This is a significant improvement in savings considering

the fact that the maximum achievable savings is less than 50%. The number of cycles for which

the FP adder is busy drops by 14% in C5 and C5IPO. Also, in C5IPO, the total simulation cycles

for this benchmark reduces significantly (by more than 20%) and the number of overhead cycles

due to power gating also drops by more than 15%. For the FP multiplier, 16% increase in leakage

savings are observed in C2 (44% compared to 38%). Across all the optimization configurations, the

leakage savings in the integer multiplier and the FP divider are almost uniform (31% and almost

50%, respectively). This is shown in the plots in Figure 4.17.

In Mpeg2D, the functional units other than the integer ALU are used very infrequently. Due to

this the leakage savings in all the units are almost uniform (almost 50%) for all the optimization

configurations.

4.4.3 Impact of Policies for Handling Standard Library Routines

The impact of the three policies that are used to handle the C standard library routines on total

leakage savings and overhead cycles in C5 (with interprocedural and FP optimizations) is shown in

Figure 4.18. These values are normalized with respect to those in P3. For the Susan benchmarks,

there is no difference in either the leakage savings or the overhead cycles across the different policies

because the math routines are not used in the most frequently executed regions. However, for the

Epwic and Mpeg2 benchmarks, both the leakage savings and the overhead cycles reduce in policy P2

with respect to those in P3 because none of the functional units are put to sleep in the regions where

the math library routines are called. The leakage savings for P1 are higher than those in P2 but lower

than those in P3 because the functional units that are put to sleep right before a math routine are

woken up when that routine is executing before the unit stays asleep for less than breakeven number

of cycles. This results in lower leakage savings in those units. The most often used math routines in

79

www.manaraa.com

these benchmarks are exp(), log(), and sqrt() all of which do not use the FP divider unit, which

has the largest component of leakage (more than 45%) among all the units. Therefore, the leakage

savings in P1 are more than in P2.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

S
u
s
a
n
C

S
u
s
a
n
E

M
p
e
g
2
E

M
p
e
g
2
D

E
p
w
i
c

U
n
e
p
w
i
c

O
v
e
r
h
e
a
d

C
y
c
l
e
s

(
N
o
r
m
a
l
i
z
e
d

w
r
t

P
3
)

P1
P2
P3

(a) Total leakage savings for all the benchmarks in C5

 0

 0.2

 0.4

 0.6

 0.8

 1

S
u
s
a
n
C

S
u
s
a
n
E

M
p
e
g
2
E

M
p
e
g
2
D

E
p
w
i
c

U
n
e
p
w
i
c

L
e
a
k
a
g
e

E
n
e
r
g
y

S
a
v
i
n
g
s

(
N
o
r
m
a
l
i
z
e
d

w
r
t

P
3
)

P1
P2
P3

(b) The overhead cycles for all the benchmarks in C5

Figure 4.18 Impact of various policies for handling the standard library routines during insertion of
sleep instructions

80

www.manaraa.com

Integer benchmarks like dijkstra, patricia, quicksort, and sha do not have any integer multiply

operations. Therefore, when peephole optimizations (particularly, weak strength reduction) are per-

formed, all overhead multiply operations (introduced by the compiler to compute array addresses)

are eliminated. The benchmarks - Rsynth, Fft, and Ffti - spend almost the entire time performing

arithmetic operations on memory elements and, therefore, none of the compiler optimizations are

able to eliminate such operations.

4.5 Conclusions

In this work, we studied the impact of various compiler optimizations on the opportunities

for power gating various functional units in an embedded processor core. To perform this study

we use the ARM Linux toolchain comprising of the GNU compiler collection (GCC), which is a

an open source production quality compiler, along with the Simplescalar-ARM processor simula-

tor. We build a set of benchmarks for embedded systems chosen from Mibench and MediaBench

suites in various predefined optimization configurations and perform extensive simulations with the

Simplescalar-ARM tool to evaluate the effect of compiler optimizations on power gating for func-

tional units. The results of the experiments indicate that the optimizations that remove computation

redundancy from the program or assist such optimizations are instrumental in improving power

gating opportunities in a program. In quantitative terms, depending on the benchmark, the leakage

energy savings due to power gating in individual functional units can be increased by 15% to 9 times

through the use of different compiler optimization techniques. The penalty of executing the sleep

instructions is at most 0.1% for all benchmarks, except for SusanC, for which the penalty is at most

0.6%. Therefore, the energy overhead involved in executing the sleep instructions is very minimal

compared to the leakage savings achieved in the functional units. With shrinking technologies and

ever increasing demand of portable devices, reducing the total energy consumption of processors

will continue to be be one of the primary goals for processor designers and compiler writers. This

work thoroughly investigates reducing the energy dissipated by the processors due to leakage power

at the compiler level with the help of architectural support. Since the leakage component in CMOS

circuits is increasing every technology generation, it is imperative that compilers will need to gener-

81

www.manaraa.com

ate code to not only improve performance but also reduce energy consumption in microprocessors.

The work presented in this paper serves as an important step towards that requirement.

82

www.manaraa.com

CHAPTER 5

STATE-RETENTIVE POWER GATING OF REGISTER FILES IN MULTI-CORES

We investigate state-retentive power gating of register files for leakage reduction in multi-core

processors supporting multithreading in this chapter. In an in-order core, when a thread gets blocked

due to a memory stall, the corresponding register file can be placed in a low leakage state through

power gating for leakage reduction. When the memory stall gets resolved, the register file is ac-

tivated for being accessed again. Since the contents of the register file are not lost and restored

on wakeup, this is referred to as state-retentive power gating of register files. While state-retentive

power gating in single cores has been studied in the literature, it is being investigated for multi-

core architectures for the first time in this work. We propose specific techniques to implement

state-retentive power gating for three different multi-core processor configurations based on the

multithreading model: (i) coarse-grained multithreading, (ii) fine-grained multithreading, and (iii)

simultaneous multithreading. The proposed techniques can be implemented as design extensions

within the control units of the in-order cores. Each technique uses two different modes of leakage

states: low leakage savings and low wake-up latency and high leakage savings and high wake-up

latency. The overhead due to wake-up latency is completely avoided in two techniques while it is

hidden for most part in the third approach, either by overlapping the wake-up process with the thread

context switching latency or by executing instructions from other threads ready for execution. The

proposed techniques were evaluated through simulations with multiprogrammed workloads com-

prised of SPEC 2000 integer benchmarks. Experimental results show that in an 8-core processor

executing 64 threads, the average leakage savings were 42% in coarse-grained multithreading, while

they were between 7% and 8% for fine-grained and simultaneous multithreading.

83

www.manaraa.com

5.1 Motivation

The motivation for our work arises from the simple observation that, in an in-order CPU, when

an instruction from a particular thread encounters a pipeline stall, no further instructions from that

thread (i.e., following instructions in program order) may be executed till that stall gets resolved.

Thus, the thread gets blocked and the hardware units that are private to that thread could be placed

in a low-leakage state. When the pipeline stall is resolved, the thread gets ready to run and those

hardware units need to be brought back to the active state from the low-leakage state so that they

are functional again.

As discussed earlier, the datapath components that are replicated to support hardware multi-

threading are the register files and buffer structures such as, instruction fetch buffers, load-store

buffers, and, in some cases, pipeline registers. Among these, the register files are the largest in area

and at the same time are the leakiest. For example, the SPARC architecture uses windowed integer

register files with eight windows [8]. In the Niagara processor, each thread requires 128 registers

for the eight windows (with 16 registers per window) and another 32 global registers, which makes

a total of 160 registers per thread. Since, each SPARC core supports four hardware threads, there

are a total of 640 registers in each SPARC core. Each register is 64 bits in size and there are addi-

tional bits for implementing error correcting codes (ECC). This makes each integer register file in

the Niagara processor a 5 KB storage structure. If this is compared with the L1 data cache, which is

private to each core in the Niagara processor and is 8 KB in size, the register file has more than 60%

of the storage size of the L1 data cache. Thus, placing parts of the register files in a low-leakage

state during pipeline stalls appears to be a very attractive option for saving over all leakage energy

in a processor core.

Another observation is that when multiple CPU cores are required to be accommodated to build

a multi-core processor, the caches that are private to each core are shrunk in size to fit the chip

within a given area limit. This results in an increase in the cache miss rates experienced by each

core. For instance, as mentioned earlier, each core in the Niagara processor features an 8 KB private

L1 data cache which results in average miss rates of around 10% [8]. However, having four threads

to run on a single core hides the latencies in stalls due to access misses from the L1 and L2 caches

84

www.manaraa.com

very effectively. Thus, as the number of cores and the number of threads per core are increased, the

fraction of time for which the integer register files for each thread stays idle due to memory stalls

also increases.

It is important that any approach to reduce leakage based on the stalls incurred by hardware

threads meet two important requirements:

1. The leakage reduction technique that is chosen to put the register file to a low-leakage state

should be state retentive so that, when it is brought back to the active state, its contents are

restored.

2. Every dynamic leakage reduction technique has a performance overhead when transitioning

between the active and the low-leakage states. Thus, it is important to ensure that the overhead

does not negatively impact the overall performance of the processor.

In this work, we apply state-retentive power gating to save leakage in integer register files during

memory stalls in multithreaded processor cores. Figure 5.1 illustrates the schematic view of this

approach for a core which supports execution of four hardware threads. The fundamental idea is

that when a memory stall (cache miss) is detected, the running thread either gets blocked or gets

tid
cache miss Control

Unit

Register file
for each thread

cache fill
other controls

Figure 5.1 Schematic view of the proposed approach for power gating register files in in-order cores
that support multithreading. When a thread (specified by tid) experiences a cache miss, its register
file is placed in a low-leakage state. When the thread gets ready to run again after the cache miss
completes, the register file is activated. The existing control unit in the core may be extended to
incorporate this scheme very easily.

85

www.manaraa.com

switched out and, therefore, its register file is placed in a low-leakage state. Eventually, when the

stall gets resolved (following a cache line fill) the register file is put back in the active state.

An intermediate strength power gating technique presented in [63] is applied to characterize

32 entry 64-bit integer register file for leakage savings. The technique is also fine-grained in that

the wake-up latencies are between three and five clock cycles (for a clock frequency of 1 GHz).

We ensure that wake-up latency associated with this technique is effectively hidden by virtue of

more than one thread sharing the CPU pipeline. Further, the register files have two distinct low-

leakage states - one with lower leakage savings and lower wake-up latency; and the other with

higher leakage savings and higher wake-up latency. Depending on the duration of the stall and the

time between when the stall gets resolved and the register file is accessed again, it is placed is one

of those low-leakage states. This is elaborated in Figure 5.2. The register file is designed to have

two low-leakage states, sleep1 and sleep2. When an L1 miss is incurred by an instruction from a

particular thread, that thread’s register file is placed in sleep1 state. If the L1 fill request further

experiences an L2 miss, then the register file is placed in the higher leakage savings state, sleep2

state. When the L2 miss completes, the register file is brought back to the sleep1 state. The wake-up

latency, tw2, is overlapped with the L1 fill latency and, thus, gets hidden. If, however, an L2 miss is

not experienced, it continues to stay in sleep1 state. When the L1 miss completes, the register file is

brought back to the active state. The wake-up latency, tw1, is hidden very effectively due to multiple

threads running on the core.

The main contributions of this work are as follows:

• We propose specific techniques to implement state-retentive power gating for three different

multi-core processor configurations based on the multithreading model: (i) coarse-grained

multithreading (CGMT), (ii) fine-grained multithreading (FGMT), and (iii) simultaneous mul-

tithreading (SMT).

• The proposed techniques can be implemented as design extensions to the control units of the

in-order processor core, with negligible control overhead.

86

www.manaraa.com

• The overhead due to wake-up latency is completely avoided in two techniques while it is

hidden for most part in the third approach, either by overlapping the wake-up process with

the thread context switching latency or by executing instructions from other threads ready for

execution.

5.2 Register File Power Gating in CGMT Processors

In the CGMT approach, whenever a thread is switched, there is a multiple cycle penalty incurred

due to the context switching process. The penalty is due to either squashing (or rolling back) of

instructions from the pipeline or draining of the pipeline following an event that triggers the context

switch. For instance, when a thread encounters a data load miss, all the instructions in the pipeline

following the load instruction are squashed before a ready thread could be switched in. Conversely,

in the case of an instruction fetch miss, all the leading instructions in the pipeline are allowed to

L1 miss
occurs

L2 miss
occurs

L2 miss
completes

sleep1

active

Leakage
energy
savings

sleep2

ts1

ts2 tw2

tw1

L1 miss
completes

Time

Leakage

Figure 5.2 Intermediate strength power gating applied during a cache miss. When an L1 cache miss
occurs, the register file is placed in the lower savings state (sleep1). Further, if L2 access also results
in a miss, then it is placed in a higher savings state (sleep2). Otherwise, it stays in sleep1 state. The
wake-up latency tw2 is overlapped with the L1 fill latency. The wake-up latency tw1 is overlapped
during thread context switching. The total leakage savings is the shaded/colored area in the figure.

87

www.manaraa.com

finish before the next ready thread is switched in. In both cases, bubbles are inserted into the pipeline

that negatively affects the pipeline performance. A direct approach to avoid this switch penalty is to

have copies of the pipeline registers at each stage, which results in increased area and complexity

of the CPU core. However, for short pipelines, the context switch penalty is only a few cycles

and the additional hardware does not justify the small improvement in performance (for e.g., IBM

Northstar/Pulsar [26]).

In this section, we describe the timing details involved in putting an integer register file in

and out of low-leakage state following a memory stall. The wake-up latency of the register file

is completely overlapped with the thread switch latency discussed above. We consider a CGMT

model in which thread context switching happens only during instruction fetch misses (referred to

as fetch misses in the remainder of the text) and data load misses (referred to as load misses in the

remainder of the text). Also, the CPU pipeline is modeled around a MIPS pipeline with instruction

fetch (IF), instruction decode (ID), execute (EX), memory (MEM), and writeback (WB) stages.

However, the register file is read during the first cycle in the EX-stage and then dispatched to the

arithmetic functional units.

5.2.1 Power Gating Control During Fetch Miss

Figure 5.3 illustrates the scenario and explains the timing details of putting a register file to sleep

following a fetch miss. The figure shows the state of the pipeline during clock cycle c, when thread

T1 is running while thread T2 is in the ready state. The scenario described in this figure assumes

that:

1. T2 was switched out earlier following a fetch miss and was eventually put back in the ready

state after its fetch miss completed.

2. T2’s register file is currently in a low-leakage state and needs 3 cycles to wake up before it can

be accessed.

3. All the stages of the pipeline are busy executing T1’s instructions, Ik−4 to Ik.

88

www.manaraa.com

I(k) I(k-1)c

c+1

c+2

c+3

c+4

T2's regfile will be accessed earliest in cycle c+6 in EX-stage (3 cycle wakeup)

T1 gets
switched

out, while T2
starts running

T1's regfile
is put

to sleep

T2's regfile
is signaled
to wake up

T1 is run-
ning, while
T2 is ready

to run

T1 drains,
while T2

waits for the
pipeline to
be available

Instructions
I(k-4) to

I(k-1)
finish

T1 encounters
a fetch miss

for I(k)
I(k-2) I(k-3) I(k-4)

I(k) I(k-1) I(k-2) I(k-3)

I(k-1) I(k-2)

I(k-1)

I(j)

IF ID EX MEM WB

Thread T2

Thread T1

cycle

Figure 5.3 Timing details for putting register files to sleep following an instruction fetch miss

While fetching Ik, an instruction fetch miss is encountered following which T1 starts to drain

in cycle (c + 1). This is done so that instructions Ik−4 to Ik−1 finish before a thread context switch

happens. During this draining period, T1’s register file needs to be active so that reads and writes

may be performed to it. Assuming that no other instruction in the pipeline gets stalled, the last

instruction, Ik−1, finishes in cycle (c+3). During this cycle, T2’s register file is signaled to wake up.

In cycle (c+4), thread T2 gets switched in and it starts to fetch instruction I j, while T1’s register file

is put to sleep. By the time I j reaches the EX-stage in cycle (c + 6) and accesses T2’s register file,

it is already in active state. The wake-up latency is overlapped with the context switching latency

and, therefore, the pipeline does not incur any stalls due to the unavailability of the register file.

Eventually, as shown in Figure 5.4, T1’s fetch miss completes at cycle (c + m) and T1 switches

in to the ready state. Then, we can consider waking up T1’s register file.

89

www.manaraa.com

c+m

T1's fetch

miss

completes

c+n+1

T1 resumes execution from instruction I(k)

c+n

T1's regfile will be accessed earliest in cycle c+n+3 in EX-stage (3 cycle wakeup)

Eventually, T2 encounters a fetch miss and finishes draining

T1 becomes

ready to run

from being

switched out

T2's regfile

is put

to sleep

T1's regfile

is signaled

to wake up

T2 gets

switched

out, while T1

starts running

T2 finishes

draining

I(l) I(l-1) I(l-2) I(l-3) I(l-4)

I(p)

I(k)

IF ID EX MEM WB

Thread T2

Thread T1

cycle

Figure 5.4 Wake-up details of T1’s register file if the pipeline is busy when its fetch miss com-
pletes. Resuming from the IF-stage means that the instruction is either fetched again or placed in
the instruction buffer from the cache line following a cache line fill.

Two possible scenarios occur:

1. T2 is currently running.

2. T2 is switched out and the pipeline is currently idle.

In scenario 1, there is no need to wake up T1’s register file because T1 will get to run only after

T2 gets switched out following a memory stall (assume a fetch stall again). This situation is shown

in Figure 5.4 when at cycle (c + n), T2 finishes draining following a fetch stall and gets switched

out. T1’s register file is signaled to wake-up during this cycle. During the next cycle, T1 resumes

execution from Ik, which would need to access the register file earliest during the EX-stage. This

allows the 3-cycle wake-up period to for T1’s register file.

In scenario 2 (Figure 5.5), however, T1 gets to run right after the fetch miss completes because

T2 is switched out and the pipeline is idle. Therefore, T1’s register file is signaled to wake up at cycle

(c+m). Since T1 resumes execution (from instruction Ik) at cycle (c+m+1), T1’s register file does

not get accessed till cycle (c+m+3) when it reaches the EX-stage.

90

www.manaraa.com

c+mT1's fetch

miss

completes

I(k)c+m+1

T1 resumes execution from instruction I(k)

T1's regfile will be accessed earliest in cycle c+m+3 in EX-stage (3 cycle wakeup)

If T2 is also in a switched out stage,

then T1's regfile is signaled to wake up

T1 becomes

ready to run

from being

switched out

T2's regfile

is put

to sleep

T1 starts

running

IF ID EX MEM WB

Thread T2

Thread T1

cycle

Figure 5.5 Wake-up details of T1’s register file if the pipeline is idle after its fetch miss completes

In 1, T1’s register file stays in a low-leakage state for (n− 5) cycles, while in 2 it stays in a

low-leakage state for (m−5) cycles.

5.2.2 Power Gating Control During Load Misses

During data store misses, the thread need not stall as long as the result of the store instruction can

be placed in a store buffer (unless the store is part of a specialized atomic instruction). However,

during a data load miss, the thread gets stalled and it starts the transition process towards being

switched out. At the same time, its register file is placed in a low-leakage state. In case, a newly

switched in thread always starts from the IF-stage (as in Niagara), then the wake-up latency of the

register file can be hidden with the number of cycles that the instruction takes to traverse from the

IF-stage to the EX-stage. However, if the load instruction that encounters the load miss is placed

in a load buffer in the MEM-stage so that it may resume execution as soon as the load miss gets

processed, then efforts are needed to hide the wake-up latency. Load instructions write into the

register file during the W-stage, and, therefore, the register file needs to be in active state before it

can be written into.

Figure 5.6 shows the register file sleep strategy following a load miss. As in Figure 5.3, this

figure also shows the state of the pipeline during clock cycle c, when thread T1 is running and thread

T2 is in the ready state. The scenario described in this figure assumes that:

91

www.manaraa.com

IF ID EX MEM WB

I(k) I(k-1) I(k-2) I(k-3) I(k-4)c

c+1

c+2

c+m

T2's regfile will be accessed earliest in cycle c+4 in EX-stage (3 cycle wakeup)

T2 does not switch out till it encounters a memory stall

T1 gets
switched

out, while T2
starts running

T1 becomes
ready to run
from being

switched out

T1 is run-
ning, while
T2 is ready

to run

Instruction I(k-4) finishes,
while I(k-3) is marked pending

T1 encounters
a load miss
for I(k-3)

Instructions
I(k-2) to I(k)

are
squashed

I(k) I(k-1) I(k-2)

I(k-3)

T2's regfile
is signaled
to wake up,
while T1's

regfile is put
to sleep

I(k-3)

I(l) I(l-1) I(l-2) I(l-3) I(l-4)

I(j)

I(k-3)

Eventually, T1's load miss completes

Load miss

Thread T2

Thread T1

cycle

Figure 5.6 Timing details for putting a register file to sleep following a data load miss. An instruction
marked pending implies that it is placed in the load buffer.

1. T2 was switched out earlier following a fetch miss and was eventually put back in the ready

state after its fetch miss completed.

2. T2’s register file is currently in a low-leakage state and needs 3 cycles to wake up before it can

be accessed.

3. All the stages of the pipeline are busy executing T1’s instructions, Ik−4 to Ik.

Following a load miss encountered by thread T1 while executing instruction Ik−3 in the MEM-

stage, instructions Ik−2 to Ik are squashed in cycle (c + 1), while Ik−3 is placed in the load buffer.

Since T2 will be switched in to be executed during the next cycle, its register file is signaled to

wake up, while T1’s register file is put to sleep. In cycle (c + 2), T2 resumes execution by fetching

92

www.manaraa.com

instruction I j, which does not access the register file till cycle (c+4), thereby giving it the adequate

number of cycles to become active.

Eventually, when T1’s load miss completes during a later cycle, say (c+m), T1 transitions from

switched out state to the ready state. Again, the decision to wake up its register file depends on

whether T2 is running (condition shown in Figure 5.7) or is switched out. In the former case, the

register file is signaled to wake up when T2 eventually encounters a stall (a load miss this time) and

gets switched out (cycle (c+n) in Figure 5.7). In the following cycle, cycle (c+n+1) as shown in

the figure, T1 resumes execution from Ik−2 in IF-stage and Ik−3 in W-stage. Since a load instruction

needs to write into the register file in the W-stage, it is stalled for three cycles to allow the 3-cycle

wake-up latency needed by the register file. This timing also coincides with the earliest cycle that

T1’s register file need to be accessed by Ik−2 (when it reaches the EX-stage). If, however, there is a

read-after-write (RAW) data dependency between Ik−3 and Ik−2, then the result of the load operand

is forwarded to the functional unit that needs it as a operand to execute instruction Ik−2.

5.3 Register File Power Gating in FGMT Processors

In contrast to the CGMT approach, FGMT and SMT approaches do not typically suffer from

multiple cycle thread switch penalties. This is because, in these approaches, each pipeline stage

processes one or more instructions from multiple threads. If an instruction from a thread encounters

a stall, no further instructions from that thread are fetched to be dispatched to the pipeline. Instead,

instructions from one or more of the ready threads are fetched and processed. The policy to select a

thread to fetch from may vary across designs. For instance, Niagara uses round-robin (RR) policy to

select one thread among a list of ready threads, while Niagara2 implements a least recently fetched

(LRF) policy to do the same. As long as there are ready threads available to the CPU, no bubbles

are inserted into the pipeline. This very idea is utilized to hide the wakeup latency of the register

files when they are transitioning from the low-leakage state to the active state.

93

www.manaraa.com

5.3.1 Power Gating Control During Fetch Miss

A CPU that is designed to support the FGMT approach, fetches an instruction from a new ready

thread each cycle and dispatches it to the pipeline. Figure 5.8 illustrates the timing details of putting

a thread’s register file in and out of low-leakage state following an instruction fetch miss. It is

assumed that the CPU has 4 hardware threads, T1−4, and a round-robin fetch policy is implemented.

The pipeline contents are shown for clock cycle c. Instruction from all four threads are currently

being processed by the different stages in the pipeline when an instruction from T1 encounters a

fetch miss. Therefore, in the next cycle, (c + 1), one of the ready threads is selected (T2 in the

figure) and an instruction from that thread is fetched. The decision to assert the sleep control to

c+n+1
I(k-3)

is

stalled
I(k-2) I(k-3)

I(p-3)
T2 gets

switched

out, while

T1 starts

running

I(k-2) may read from T1's regfile this

cycle in EX-stage (3 cycle wakeup)

c+n+2
I(k-3)

is still

stalled
I(k-1) I(k-3)

I(p-3)

I(k-2)

c+n+3
I(k-3)

writes into

T1's regfile

(3 cycle

wakeup)

I(k-2) I(k-3)

I(p-3)

I(k-1)I(k)

c+n

Instruction

I(p-3)

is marked

pending

Instructions

I(p-2) to I(p)

are

squashed

I(p) I(p-1) I(p-2)

I(k-3)
T1's regfile is signaled to wake up,

while T2's regfile is put to sleep

I(p-3)

If there is a RAW hazard between I(k-3) and I(k-2) , data is forwarded

from the load buffer to the functional unit that needs it as an operand

IF ID EX MEM WB

Thread T2

Thread T1

cycle

Figure 5.7 Timing details for waking up T1’s register file from sleep after its load miss completes
and it gets ready to run. Resuming from the W-stage indicates that the result of the load is filled into
the load buffer from the cache line.

94

www.manaraa.com

c

T1

encounters

a fetch

miss Fetch miss

T1 gets

switched out

c+1
T1's register

file is put to

sleep

T1's register

file might be

written into in

the W-stage

When, T1's fetch miss completes, it transitions from blocked to ready.

c+m
T1's regfile

is signaled

to wake up

c+m+1

T1's regfile will be needed earliest in cycle c+m+3

T1 can
resume

execution

right away

T1's

fetch miss

completes

Thread T2

Thread T1

Thread T4

Thread T3

IF ID EX MEM WB

cycle

Figure 5.8 Timing details for putting a thread’s register file in and out of low-leakage state following
a fetch miss in FGMT

T1’s register file depends on whether there are any instructions belonging to T1 in the pipeline and

require to access the register file. For instance, as shown in the figure, one of T1’s instructions is in

the W-stage in cycle c. Therefore, it is imperative that the register file be active till that instruction

finishes writing into the register file. In this case, T1’s register file is put to sleep at the end of cycle

(c+1).

Eventually, when T1’s fetch miss completes at cycle (c + m), it becomes ready to run. T1’s

register file is signaled to wake up right away. Assuming that it is indeed selected by the thread

scheduler in the next cycle, i.e., cycle (c + m + 1), it will access T1’s register file earliest in cycle

(c+m+3), thereby providing for the 3-cycle wake-up latency.

5.3.2 Power Gating Control During Load Miss

In FGMT processors, when a load miss is detected for an instruction from a thread, all the

instructions following the load instruction in the pipeline are squashed (or rolled back to the in-

95

www.manaraa.com

c
T1

encounters

a load miss
load miss

T1 is marked unavailable and an

instruction from T2 is fetched

c+1

T1's regfile

is put to

sleep

T1's load

instruction

is marked

pending

c+mT1's load

miss

completes

T1's regfile

is signaled

to wake up

c+m+1T1 can
resume

execution

T1's register file is accessed earliest in cycle c+m+3 either by the pending load or the

new instruction. If there is a RAW hazard between the two T1's instructions, data

is forwarded from the load buffer to the functional unit that needs it as an operand.

Writeback to

T1's regfile

is stalled for

2 more cycles

When, T1's load miss completes, it transitions from blocked to ready Thread T2

Thread T1

Thread T4

Thread T3

IF ID EX MEM WB

cycle

Figure 5.9 Timing details for putting a thread’s register file in and out of low-leakage state following
a data miss in FGMT

struction buffer). However, since in each cycle a different thread is dispatched to the pipeline in an

FGMT approach, the number of instructions squashed is expected to be much smaller than that in

the case of CGMT. The load instruction itself may also be squashed or it may be marked pending at

the MEM-stage (in a load buffer). The choice of implementation here impacts the wake-up strategy

applied to wake up the register file for a stalled thread when its load miss completes. In the former

case (as in Niagara), the wake-up latency of the register file is overlapped with the number of cycles

that the instruction takes to reach the EX-stage from the IF-stage (described earlier in Section 5.2.2).

However, in the latter case (shown in Figure 5.9), the writeback to the register file is deferred for

additional cycles (2 cycles in the figure) to account for the wake-latency. If there is a RAW hazard

96

www.manaraa.com

between the two T1’s instructions in the pipeline, then data is forwarded from the load buffer to the

consuming instruction when it reaches the EX-stage.

5.4 Register File Power Gating in SMT Processors

We model a generic simultaneous multithreading in-order core processor, in which each pipeline

stage is capable of processing multiple instructions from distinct threads during the same clock

cycle. To support this capability, each pipeline stage is equipped with stage buffers for each thread

context. Once an instruction is processed by the stage, it is placed in the stage buffer for its thread

context for the next stage to process it in a subsequent clock cycle. However, if an instruction

gets stalled at a stage due to a multicycle latency operation, like an integer multiplication or a

memory stall, it is marked blocked or unavailable till the operation finishes. Along with that, all the

instructions from that thread in all the preceding stages are also marked blocked. Each stage picks

up instructions from only ready threads to process during a clock cycle.

Stage S(k)

S(k-1)
stage buffers

Stage S(k-1)

S(k)
stage buffers

T2T1 T4T3

Figure 5.10 Schematic view of a pipeline organization to support SMT in in-order cores. Each
pipeline stage has stage buffers for each thread context. Instructions from these stage buffers are
chosen to be processed by the next stage. During a pipeline stall, the thread is marked blocked in
all the preceding stages (indicated by the circular shape). Only instructions from the ready threads
are picked and processed by each stage.

Figure 5.10 shows the schematic view of this structure. It shows a snapshot of two back to back

stages of the pipeline, Sk−1 and Sk. Sk−1 processes instructions from threads T3 and T4 and places

97

www.manaraa.com

them in their respective thread buffers in that stage. Sk, on the other hand, picks up instructions

from threads T1 and T4 from Sk−1’s stage buffers, processes them, and places them in their respec-

tive thread buffers in this stage. Thread T2 is shown to have been marked as unavailable (the circular

shape in the figure) or stalled in Sk−1 because it is currently performing a multicycle latency opera-

tion. Also, an instruction from T3 cannot be processed by Sk since the buffer for thread T3 is full in

this stage.

In this SMT core, placing the register file in and out of the low-leakage state during both fetch

misses and data misses is very similar. Once a miss is detected, the thread is marked blocked in all

the stages in the pipeline so that the register file may be put to sleep immediately. Note that this is

different from the regular case in which the thread is marked blocked only in the preceding stages.

When the miss completes, the register file is signaled to wake up but the thread is marked ready

only after a few additional cycles to account for the wake-up latency of the register file. As long as

there are instructions from other ready threads in the pipeline, the additional blocked cycles do not

result in any performance degradation.

5.5 Summary of the Proposed Techniques

A summary of the proposed techniques for CGMT, FGMT, and SMT cores is presented in

Table 5.1. In the CGMT approach, the wake-up latency of the register files is overlapped with the

latency associated with the latency of thread context switching. It can also be observed that, since no

more than one thread is active simultaneously, the register files for all the other threads, irrespective

of whether they are stalled or ready, may be kept in low-leakage states. Thus, as the number of

threads are increased in a CGMT approach, it is expected that the leakage savings in the register

files also increase linearly. On the other hand, in the FGMT and SMT approaches, multiple threads

are simultaneously active in the CPU at the same time. Therefore, the leakage savings achieved in

these approaches are not expected to scale with the number of hardware thread contexts supported

by the CPU. Instead, they are expected to be proportional to the fraction of the time that the threads

spend waiting on memory stalls.

98

www.manaraa.com

Table 5.1 A summary of the proposed techniques

Control Feature CGMT FGMT SMT

Sleep after a fetch
miss

Wait till the pipeline
drains

Wait till there are no
instructions from the
target thread in the
pipeline

Immediately; block
all the instructions
belonging to this
thread in the entire
pipeline

Wake up after the
fetch miss completes

When the thread gets
switched in (its state
changes from ready
to run)

As soon as the fetch
miss completes

As soon as the fetch
miss completes

Performance
degradation due to
wake-up overhead

Zero cycles; the
thread resumes
execution from the
IF-stage

Zero cycles; the
thread resumes
execution from the
IF-stage

Best case is zero;
there are instructions
available from other
threads. Worst case is
wake-up latency
number of cycles;
otherwise.

Sleep after a load
miss

Immediately; any
following instructions
in the pipeline are
squashed

Immediately; any
following instructions
from that thread in
the pipeline are
squashed

Immediately; block
all the instructions
belonging to this
thread in the entire
pipeline

Wakeup after the load
miss completes

When the thread gets
switched in (its state
changes from ready
to run)

As soon as the load
miss completes

As soon as the load
miss completes

Performance
degradation due to
wake-up overhead

Zero cycles; either
the load instruction or
the instruction
following the load
resumes execution
from the IF-stage.

Zero cycles; either
the load instruction or
the instruction
following the load
resumes execution
from the IF-stage.

Best case is zero;
there are instructions
available from other
threads. Worst case is
wake-up latency
number of cycles;
otherwise.

99

www.manaraa.com

F D E M W

c
T1

encounters
a fetch
miss Fetch miss

T1 gets
switched out

c+4
T1's register
file is put to

sleep

A T1
instruction

is still in
the D-stage

Have to wait 4 clock cycles to place T1's regfile to sleep, if no further stalls

The other
threads may

have resumed
running

c+3
T1's last

instruction
finishes

T2

T1

T4

T3

Figure 5.11 A pathological case during a fetch miss in an FGMT core. All the other threads are
switched out and only instructions belonging to T1 are in the pipeline.

Further, in the CGMT and FGMT cores, the latency of putting a register file from a low-leakage

state to the active state can be overlapped completely, thereby not having to incur any performance

overhead. However, for the SMT cores, performance degradation can happen when there are not

enough ready threads in the core and keeping a thread blocked for the additional cycles inserts

bubbles into the pipeline. However, the likelihood of this scenario can be reduced by increasing the

number of threads that the SMT core is able to support.

Furthermore, the amount of savings achieved is also influenced by the number of ready threads

available. One pathological case for the FGMT approach is shown in Figure 5.11 where threads

T2−4 are all stalled and only instructions from thread T1 are in the pipeline. Following a fetch miss

in cycle c, T1’s register file may not be put to sleep till the all of T1’s instructions are drained. In

the example depicted in the figure, we have to wait four additional cycles to do so. If this stall were

resolved in 10 cycles (a typical L2 hit latency for a CPU clock frequency of 1 GHz), then the savings

achieved by this technique are reduced by 40%.

100

www.manaraa.com

5.6 Experimental Setup and Results

In this section, we describe the experimental setup used in this work to evaluate the effectiveness

of the proposed techniques in multi-core processors.

5.6.1 Integer Register File Characterization

For the purpose of estimating leakage characteristics and the latency of a register file with

intermediate-strength power gating, we consider a 32-entry 64-bit flip-flop based register file (with-

out any error correction code bits) with two read ports and one write port in 45nm FreePDK tech-

nology [64]. The layout design of a D-flip-flop from the Nangate 45 nm open cell library [65] was

extended to include the two read ports and one write port and a SPICE netlist with parasitics was ex-

tracted using Calibre from Mentor Graphics. The characterization of the register file was performed

using spice simulations. The average access latency was 0.893 ns. The leakage states sleep1 and

sleep2 reduce leakage by 36% and 52% respectively. Their wake-up latencies, for a clock of 1 GHz,

were computed to be 3 cycles and 5 cycles. The breakeven periods were shorter than the wake-up

latencies. These details outlined in Table 5.2.

Table 5.2 Register file leakage states

Leakage Normalized Wakeup Latency
State Leakage (1 GHz Clock)
active 1 -
sleep1 0.64 3 cycles
sleep2 0.48 5 cycles

5.6.2 Processor Configurations and Workload Details

We used the M5 simulator [66] for modeling the multi-core processors featuring multithreaded

CPU cores. The M5 simulator supports four different CPU models to provide simulation platforms

for functional and detailed simulations. Among them, O3CPU models a detailed out-or-order pro-

cessor core and the InOrderCPU models a detailed in-order processor core. The in-order code has

some default support for both CGMT and SMT models. It was further extended to provide compre-

101

www.manaraa.com

hensive support to model the multithreading approaches described in this chapter. We run all our

detailed simulations for DEC Alpha ISA in syscall emulation mode.

Table 5.3 SPEC 2000 integer benchmarks

Name Dynamic Instruction Count (Millions)
vpr 17.6
gap 44.8
vortex 88.3
twolf 91.9
eon 94.0
crafty 94.4
gcc 96.8
mcf 188.6
perlbmk 200.6
parser 267.8
gzip 601.9

- The dynamic instruction counts are for the small reduced
(smred) input sets [67].
- Benchmark bzip2 is not shown because it does not have
an smred input set.

Table 5.3 enumerates the integer benchmarks from the SPEC 2000 benchmark suite and their

dynamic instruction counts for the small reduced (smred) input sets [67]. The binaries are tru64 bi-

naries (COFF version 3.11-10) built with optimization levels O2 and O3. Multiprogrammed work-

loads for each processor core is created by choosing the required number of benchmarks (all distinct)

at random. Simulations are run till the first thread finishes execution.

We configure a number of multi-core processors comprising of in-order CPU cores by varying

the number of cores, the number of hardware contexts that each core supports, and a number of

L1 and L2 cache parameters. The processor parameters are tabulated in Table 5.4. The number of

cores is either two, four or eight. The number of hardware threads that each core supports is scaled

from two to eight in case of CGMT, from three to eight in case of FGMT, and from four to eight in

case of SMT. We cap the number of threads per core at eight threads because the cost growth for

supporting additional hardware threads is linear up to around eight threads but is superlinear after

that [68].

The in-order cores have simple specifications. In case of CGMT and FGMT, the cores can pro-

cess at most one instruction each cycle in each of its pipeline stages, while, in the case of SMT, the

102

www.manaraa.com

Table 5.4 Multi-core processor parameters

Parameter Multithreading Approach
CGMT FGMT SMT

Clock
1 GHz

Speed
Number

2, 4, and 8
of Cores

Number of
2-8 3-8 4-8

Contexts
Pipeline

1 1 2Bandwidth
(in insts/cycle)

Functional 1 int ALU 1 int ALU 2 int ALU
Units 1 int Mult 1 int Mult 1 int Mult

Load/Store/Fetch
1 per thread

Buffers
Fetch Select

Round-robin
Policy

cores can process two. Therefore, we provide two integer ALUs to each core in case of SMT but

only one integer ALU to the cores in case of CGMT and FGMT. The count of integer multipliers,

however, is the same (one) for all the cores. The execution latencies of the integer ALU and integer

multiplier are 1 cycle and 3 cycles, respectively. Furthermore, we model a fully pipelined integer

multiplier so that integer multiply instructions that are not data dependent on each other may be

issued every clock cycle. The clock frequency is uniform (1 GHz) across all the processor configu-

rations. Each core has one load buffer, one store buffer, and one fetch buffer per thread. The policy

to select a thread to fetch instructions from is set to round-robin.

The cache parameters are tabulated in Tables 5.5, 5.6, 5.7, 5.8, and 5.9. We set the cache

parameters based on the specifications of the Niagara series of processors. The hit latencies for the

Table 5.5 Memory access latencies

Memory Unit Access Latency
L1 D-cache 1 cycle
L1 I-cache 1 cycle

L2 cache (shared) 10 cycles
Physical Memory 30 cycles

103

www.manaraa.com

Table 5.6 L1 D-cache and I-cache parameters

Size
2 cores 4 cores 8 cores
64 KB 32 KB 16 KB

Set 2 TCs 3-4 TCs 5-8 TCs
Associativity 2 4 8

MSHRs as many as the number of TCs

TCs - Thread Contexts

private L1 caches (both I-cache and D-cache) and the shared L2 cache are set to 1 cycle and 10

cycles, respectively.

Table 5.7 L2 cache size (in MB)

Number Number of Cores
of Threads 2 4 8

2 2 3 4
3-4 3 4 6
5-8 4 6 8

Table 5.8 L2 cache set associativity

Number Number of Cores
of Threads 2 4 8

2 4 6 8
3-4 6 8 12
5-8 8 12 16

Table 5.9 L2 cache MSHR count

Number Number of Cores
of Threads 2 4 8

2 4 6 8
3-4 6 8 12
5-8 8 12 16

The physical memory access latency is set to 30 cycles. The cache line size for each cache is set

to 64 bytes. As the number of cores are increased, the private L1 caches are reduced in size to have

larger shared L2 caches. Therefore, while the L1 cache size is scaled down from 64 KB to 16 KB

as the number of cores is increased from 2 to 8, the size of the L2 cache is scaled upward between

2 MB and 8 MB based on the number of cores and the number of thread contexts (Tables 5.6 and

5.7).

104

www.manaraa.com

When the number of cores and the number of thread contexts increase, the set associativity for

both L1 and L2 caches are increased to reduce the number of conflict misses (Tables 5.6 and 5.8).

The number of Miss Status Handling Registers (MSHRs) in the L1 caches is also increased with the

number of thread contexts to allow at most one outstanding L1 cache miss per thread (Table 5.6).

The MSHR count for the L2 cache is dependent on both the number of cores and the number of

thread contexts (Table 5.9). During the simulations, the caches are warmed up for the first 100,000

cycles.

5.6.3 Results

The instructions per cycle (IPC) counts for the workloads on the different multi-core processor

configurations are plotted in Figures 5.12, 5.13, and 5.14. The IPC for CGMT cores ranges between

0.41 and 0.52, while for FGMT cores the IPC is between 0.61 and 0.68. This marked difference is

primarily due to the fact that the FGMT approach is very effective in hiding stalls due to both long

latency events (for e.g., cache misses) and short latency events (branch resolution, data dependency

resolution, etc.). However, CGMT switches threads to hide stalls only due to long latency events.

Moreover, the thread switch penalty in CGMT cores may be more than one cycle, whereas, in

FGMT cores, this penalty is exactly one cycle as long as there are ready threads available.

The IPC counts for the SMT cores are in the range of 0.91 and 1.22 because the pipeline width

for the SMT cores is double of that of the CGMT and FGMT cores. For the same number of threads,

the IPC reduces as the number of cores are increased because the L1 cache sizes become smaller. It

can also be observed that while the IPC counts for the CGMT and FGMT cores tend to saturate as

the number of thread contexts is increased to eight, the IPC for SMT cores increase more linearly

indicating that it could support more threads before its performance levels out.

The leakage savings in the integer register files in CGMT cores is shown in Figure 5.15. As

expected, the savings in the CGMT processors scale very well with the number of thread contexts.

For 2 thread contexts, the savings are in the range of 0.9% to 2.9%, while, for 8 thread contexts,

the savings are between 22% and 42%. This is because, in a CGMT approach, only a single thread

context is active at a time in the entire pipeline till it experiences a long latency stall. Therefore,

105

www.manaraa.com

0.4

0.45

0.5

0.55

2 3 4 5 6 7 8

Number of thread contexts

In
st

ru
ct

io
ns

 p
er

 c
yc

le

2-core 4-core 8-core

Figure 5.12 Average instructions per cycle (IPC) count for CGMT approach

the register files for the rest of the thread contexts, irrespective of whether they are ready or stalled,

may be put to sleep.

In contrast to this, in the FGMT and SMT approaches, instructions belonging to different thread

contexts are processed by different pipeline stages. Therefore, the savings do not scale with the

number of thread contexts but instead are proportional only to the fraction of the time that is spent

by the threads waiting on memory stalls. For FGMT cores, the leakage savings range from 0.8% to

2.02% for 3 thread contexts and 3.09% - 7.8% for eight thread contexts (Figure 5.16).

The total latencies of L1 D-cache read misses, L1 I-cache read misses, and L2 read misses

(normalized over the total number of CPU cycles) averaged over the number of threads are plotted

in Figures 5.17, 5.18, and 5.19.

For SMT cores, the leakage savings range from 1.02% to 2.23% for 4 thread contexts and

2.97% - 7.27% for eight thread contexts (Figures 5.20). The degradation in performance due to

the proposed technique in SMT cores was calculated by counting the number of cycles when an

106

www.manaraa.com

instruction could not be processed by a pipeline stage because the register file was not awake. For

SMT cores, the degradation was 0.023% in case of a 8-core processor with each core executing 8

threads.

5.7 Discussion

With continued scaling in modern VLSI circuit fabrication technology, leakage power and heat

dissipation limits have driven not only circuit designers to devise newer techniques to reduce power

dissipation in circuits but also the CPU designers to change the paradigm of designing processors

to improve performance. Hardware multithreading and multi-core processors are outcomes of this

new design paradigm. The work presented in this chapter leverages existing circuit level techniques

to reduce leakage in such processors. In this work, we synchronize the sleep of a register file private

to a thread with the unavailability of that thread and the wake-up with the readiness of that thread

to run. This is because the integer register file is accessed very frequently by integer applications.

0.6

0.62

0.64

0.66

0.68

0.7

3 4 5 6 7 8

Number of thread contexts

In
st

ru
ct

io
ns

 p
er

 c
yc

le

2-core 4-core 8-core

Figure 5.13 Average instructions per cycle (IPC) count for FGMT approach

107

www.manaraa.com

0.9

1

1.1

1.2

1.3

4 5 6 7 8

Number of thread contexts

In
st

ru
ct

io
ns

 p
er

 c
yc

le

2-core 4-core 8-core

Figure 5.14 Average instructions per cycle (IPC) count for SMT approach

In the future, we would like to extend this work to in-order cores with floating point register files.

Floating point applications use both integer and floating point register files and, therefore, the pat-

terns of accesses to these units may provide more opportunities of power gating the register files.

Therefore, the fundamental approach that is at the core of the techniques proposed in this work will

result in conservative savings if directly applied in the case of floating point register files. Also,

using a partitioned register file for each thread could have further advantages. Instead of waking up

the entire register file at the same time, only the partitions that needs to be accessed can be woken

up more urgently compared to the rest of the partitions.

108

www.manaraa.com

0

5

10

15

20

25

30

35

40

45

3 4 5 6 7 8

Number of thread contexts

L
ea

ka
ge

 s
av

in
gs

 (
%

)

2-core 4-core 8-core

Figure 5.15 Average IRF leakage energy savings for CGMT cores

0

2

4

6

8

3 4 5 6 7 8

Number of thread contexts

L
ea

ka
ge

 s
av

in
gs

 (
%

)

2-core 4-core 8-core

Figure 5.16 Average IRF leakage energy savings for FGMT cores

109

www.manaraa.com

0

2

4

6

8

3 4 5 6 7 8

Number of thread contexts

D
at

a
re

ad
 m

is
s

la
te

nc
y

pe
r

th
re

ad

(%
 o

f
to

ta
l c

yc
le

s)

2-core 4-core 8-core

Figure 5.17 Data read miss latency per thread for FGMT cores

0

2

4

6

8

10

3 4 5 6 7 8

Number of thread contexts

F
et

ch
 m

is
s

la
te

nc
y

pe
r

th
re

ad
(%

 o
f

to
ta

l c
yc

le
s)

2-core 4-core 8-core

Figure 5.18 Instruction fetch miss latency per thread for FGMT cores

110

www.manaraa.com

0

2

4

6

8

10

3 4 5 6 7 8

Number of thread contexts

F
et

ch
 m

is
s

la
te

nc
y

pe
r

th
re

ad
(%

 o
f

to
ta

l c
yc

le
s)

2-core 4-core 8-core

Figure 5.19 L2 read miss latency per thread for FGMT cores

0

2

4

6

8

4 5 6 7 8

Number of thread contexts

L
ea

ka
ge

 s
av

in
gs

 (
%

)

2-core 4-core 8-core

Figure 5.20 Average IRF leakage energy savings for SMT cores

111

www.manaraa.com

CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

Energy and power considerations in the world of computing, be that in embedded processors,

personal computers, or server farms, is the newest dimension that has challenged computer archi-

tects and circuit designers to think of newer design paradigms for such systems. The research efforts

reported in this dissertation represent a solid contribution to addressing the issue of reducing leakage

energy in both embedded and general-purpose microprocessors. Here we list some future directions

to extend the works presented in this dissertation:

• Investigating more aggressive compiler techniques: In the works described in Chapter 3 and

Chapter 4, the algorithms proposed to identify idle program regions where functional units

may be turned off target finding large subgraphs that are enclosed within functions and loops.

This is because the breakeven periods of the functional units were two orders of magnitude

higher than the processor clock frequency. However, more recently, newer technologies and

more sophisticated circuit design techniques have brought down the breakeven periods to

2X-10X of the microprocessor clock period. This makes it important to investivate more

aggressive technique at the compiler level to be able to power gate units in a more fine-grained

manner.

• Designing partitioned functional units and register files: In this work, power gating of the

units has been considered at the module level. Either the entire unit is active or is put to sleep

for leakage reduction. However, an unit may be designed as partitioned blocks so that one

or more of those partitions may be put to sleep when they are idle. This will entail some

challenges at the circuit level because (i) partitioned designs usually have more area overhead

112

www.manaraa.com

than non-partitioned designs, and (ii) powering on a circuit block induces noise in the power

rails of their neighboring blocks.

• Modeling full system power: In this work power modeling has been done only for the specific

components that have been targeted to reduce leakage power in. Going forward, it would be

important to model entire systems and analyze the power consumption and energy efficiency

in the context of operating systems that manage such hardware systems. This includes mod-

eling off-chip caches, if any, graphics processing units (GPUs), interconnection networks,

physical memory, secondary storage devices, and other peripheral devices.

• Supplementing ACPI for power management: Advanced Configuration and Power Interface

(ACPI) [69] specification establishes industry common standard interfaces for operating sys-

tem (OS)-directed power management of entire systems. Currently, the ACPI specifies active

and standby power management of the microprocessor as a single unified unit. However,

the techniques presented in this disseration address reducing standyby power in the subcom-

ponents of the microprocessor even when the core itself is active. An exciting future work

would be to extend the current standard to incorporate the leakage power reduction techniques

presented in this dissertation.

113

www.manaraa.com

REFERENCES

[1] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. C. Harting, V. Parikh, J. Park, and

D. Sheffield. Efficient Embedded Computing. Computer, 41(7):27–32, 2008.

[2] T. R. Halfhill. MIPS Threads the Needle. Microprocessor Report, 20(2):1–8, 2006.

[3] E. Grochowski and M. Annavaram. Energy per Instruction Trends in Intel Microprocessors.

Technology@Intel Magazine, pages 1–8, 2006.

[4] S. Borkar. Design Challenges of Technology Scaling. IEEE Micro, 19:23–29, 1999.

[5] F. J. Pollack. New Microarchitecture Challenges in the Coming Generations of CMOS Pro-

cess Technologies. In MICRO 32: Proceedings of the 32nd annual ACM/IEEE international

symposium on Microarchitecture, page 2, 1999.

[6] E. Grochowski et al. Best of Both Latency and Throughput. In ICCD ’04: Proceedings of the

IEEE International Conference on Computer Design, pages 236–243, 2004.

[7] A. Sodan et al. Parallelism via Multithreaded and Multicore CPUs. IEEE Computer, 43(3):24–

32, 2010.

[8] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way Multithreaded Sparc Proces-

sor. IEEE Micro, 25(2):21–29, 2005.

[9] P. Kongetira, K. Aingaran, and K. Olukotun. Implementation of an 8-core, 64-thread, Power-

Efficient SPARC Server on a Chip. IEEE JSSC, 43(1):6–20, 2008.

[10] L. Seiler et al. Larrabee: A Many-Core X86 Architecture for Visual Computing. ACM Trans.

Graph., 27(3):1–15, 2008.

114

www.manaraa.com

[11] MIPS. MIPS32 1004KTM CPU Family Software Users Manual. http://www.mips.com, 2009.

[12] J. Rabaey. Low Power Design Essentials. Springer, 2009.

[13] R.K. Krishnamurthy, S.K. Mathew, M.A. Anders, S.K. Hsu, H. Kaul, and S. Borkar. High-

Performance and Low-Voltage Challenges for Sub-45nm Microprocessor Circuits. Intl. Conf.

ASIC, pages 283–286, 2005.

[14] S. Rusu et al. A 65nm Dual-Core Multithreaded Xeon Processor with 16MB L3 Cache. pages

17–25, 2007.

[15] S. Li et al. McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multi-

core and Manycore Architectures. In MICRO 42: Proceedings of the 42nd Annual IEEE/ACM

International Symposium on Microarchitecture, pages 469–480. ACM, 2009.

[16] D. Duarte, Y.F. Tsai, N. Vijaykrishnan, and M.J. Irwin. Evaluating Run-Time Techniques for

Leakage Power Reduction. Proc. 7th ASP-DAC, pages 31–38, 2002.

[17] M. Johnson, D Somasekhar, and K. Roy. Models and Algorithms for Bounds on leakage in

CMOS Circuits. IEEE TCAD Integrated Circuits and Systems, pages 714–725, 1999.

[18] S. Narendra, V. De, D. Antoniadis, A. Chandrakasan, and S. Borkar. Scaling of stack effect and

its application for leakage reduction. In ISLPED ’01: Proceedings of the 2001 International

Symposium on Low Power Electronics and Design, pages 195–200, New York, NY, USA,

2001. ACM.

[19] Y. Ye, S. Borkar, and V. De. A New Technique for Standby Leakage Reduction in High-

Performance Circuits. Digest of Technical Papers, Symp. on VLSI Circuits, pages 40–41,

1998.

[20] K. Roy. Leakage Power Reduction in Low-Voltage CMOS Design. IEEE International Con-

ference on Electronics, Circuits and Systems, pages 167–173, 1998.

[21] J.T. Kao and A.P. Chandrakasan. Dual-Threshold Voltage Techniques for Low-Power Digital

Circuits. IEEE J. of Solid-State Circuits, 35:1009–1018, 2000.

115

www.manaraa.com

[22] S. Mutoh, T. Douskei, Y. Matsuya, T. Aoki, S Shigematsu, and J. Yamada. 1-V Power Supply

High-Speed Digital Circuit Technology with Multi-Threshold Voltage CMOS. IEEE J. of

Solid-State Circuits, pages 847–854, 1995.

[23] Z. Hu et al. Microarchitectural Techniques for Power Gating of Execution Units. International

Symposium on Low Power Electronics and Design, pages 32–37, 2004.

[24] W. Buchholz. Planning a Computer System: Project Stretch. McGraw-Hill, Inc., Hightstown,

NJ, USA, 1962.

[25] J. E. Thornton. Parallel operation in the control data 6600. In AFIPS ’64 (Fall, part II):

Proceedings of the October 27-29, 1964, Fall Joint Computer Conference, Part II: Very High

Speed Computer Systems, pages 33–40, New York, NY, USA, 1965. ACM.

[26] J. P. Shen and M. H. Lipasti. Modern Processor Design: Fundamentals of Superscalar Pro-

cessors, 1st ed. McGraw-Hill Science/Engineering/Math, 2004.

[27] T. Ungerer, B. Robič, and J Šilc. A Survey of Processors with Explicit Multithreading. ACM

Computing Surveys, 35(1):29–63, 2003.

[28] S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay: Exploiting Generational Behavior to

Reduce Cache Leakage Power. International Symposium on Computer Architecture, pages

240–251, 2001.

[29] K. Flautner et al. Drowsy Caches: Simple Techniques for Reducing Leakage Power. Interna-

tional Symposium on Computer Architecture, pages 148–157, 2002.

[30] L. Clark, S. Demmons, N. Deutscher, and F. Ricci. Standby Power Management for a 0.18µm

Microprocessors. International Symposium on Low Power Electronics and Design, pages 7–

12, 2002.

[31] S. Dropsho, V. Kursun, D.H. Albonesi, S. Dwarkadas, and E.G. Friedman. Managing Static

Leakage Energy in Microprocessor Functional Units. International Symposium on Microar-

chitecture, pages 321–332, 2002.

116

www.manaraa.com

[32] W. Zhang et al. Compiler Suppport for Reducing Leakage Energy Consumption. Design

Automation and Test in Europe, pages 1146–1147, 2003.

[33] S. Rele et al. Optimizing Static Power Dissipation by Functional Units Superscalar Processors.

International Conference on Compiler Construction, pages 261–274, 2002.

[34] Y. You, C. Lee, and J.K. Lee. Compiler Analysis and Supports for Leakage Power Reduction

on Microprocessors. ACM Transactions on Design Automation of Electronic Systems, pages

147–164, 2006.

[35] N. Seki et al. A Fine-Grain Dynamic Sleep Control Scheme in MIPS R3000. In Computer

Design, 2008. ICCD 2008. IEEE International Conference on, pages 612–617, 2008.

[36] N. Komoda et al. Compiler Directed Fine Grain Power Gating for Leakage Reduction in Mi-

croprocessor Functional Units. Workshop on Optimizations for DSP and Embedded Systems,

pages 42–51, 2009.

[37] S. Roy, N. Ranganathan, and S. Katkoori. A Framework for Power Gating Functional Units in

Embedded Microprocessors. IEEE Transactions on VLSI Systems, 17:1640–1649, 2009.

[38] S. Rusu et al. Power Reduction Techniques for an 8-core Xeon Processor. In ESSCIRC, 2009.

ESSCIRC ’09. Proceedings of, pages 340–343, 2009.

[39] R. Kumar and G. Hinton. A Family of 45nm IA Processors. In Solid-State Circuits Conference

- Digest of Technical Papers, 2009. ISSCC 2009. IEEE International, pages 58–59, 2009.

[40] T. Saito et al. Design of Superscalar Processor with Multi-Bank Register File. In Circuits and

Systems, 2005. ISCAS 2005. IEEE International Symposium on, pages 3507–3510, 2005.

[41] A. Agarwal, R. Kaushik, and R.K. Krishnamurthy. A Leakage-Tolerant Low-Leakage Reg-

ister File with Conditional Sleep Transistor. In SOC Conference, 2004. Proceedings. IEEE

International, pages 241–244, 2004.

[42] J. Lingling et al. Reduce Register Files Leakage Through Discharging Cells. In Computer

Design, 2006. ICCD 2006. International Conference on, pages 114–119, 2006.

117

www.manaraa.com

[43] H. O. Kim et al. Supply Switching with Ground Collapse for Low-Leakage Register Files

in 65-nm CMOS. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

18(3):505–509, 2010.

[44] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown. MiBench:

A Free, Commercially Representative Embedded Benchmark Suite. IEEE Annual Workshop

on Workload Characterization, pages 3–14, 2001.

[45] M. Leeser and X. Wang. Variable Precision Floating Point Division and Square Root. Work-

shop HPEC, pages 47–48, 2004.

[46] W. Zhao and Yu. Cao. Predictive Technology Model for Nano-CMOS Design Exploration.

ACM JETC, 3:1–17, 2007.

[47] D. Burger and T. Austin. The Simplescalar Tool Set, version 2.0. Technical report, Tech. Rep.

TR-97-1342, University of Wisconsin-Madison, 1997.

[48] S. Roy, N. Ranganathan, and S. Katkoori. Exploration of Compiler Optimization Techniques

for Enhancing Power Gating. International Symposium on Circuits and Systems, pages 1004–

1007, 2009.

[49] M.N. Wegman and F.K. Zadeck. Constant Propagation with Conditional Branches. ACM

Transactions on Programming Languages and Systems, pages 231–236, 1991.

[50] L Rolaz. An Implementation of Lazy Code Motion for Machine SUIF. Technical report, Swiss

Federal Institute of Technology, 2003.

[51] P. Briggs and T.J. Harvey. Multiplication by Integer Constants. Technical report, Rice Univer-

sity, 1994.

[52] K.D. Cooper, L.T. Simpson, and C.A. Vick. Operator Strength Reduction. ACM Transactions

on Programming Languages and Systems, pages 603–625, 2001.

[53] M. Kandemir, N. Vijaykrishnan, M.J. Irwin, and Wu Ye. Influence of Compiler Optimizations

on System Power. IEEE Transactions on VLSI Systems, 9:801–804, 2001.

118

www.manaraa.com

[54] GNU Project. GCC, the GNU Compiler Collection. http://gcc.gnu.org/ .

[55] D. Burger and T. Austin. The Simplescalar Tool Set, version 2.0. Technical report, TR-97-

1342, University of Wisconsin-Madison, 1997.

[56] C Lee, M. Potkonjak, and W.H. Mangione-Smith. MediaBench: A Tool for Evaluating and

Synthesizing Multimedia and Communications Systems. International Symposium on Mi-

croarchitecture, page 330, 1997.

[57] R. Morgan. Building and Optimizing Compiler. Digital Press, 1998.

[58] T. Granlund and P. Montgomery. Division by Invariant Integers using Multiplication. Proc.

ACM SIGPLAN, Conf. on PLDI, pages 61–72, 1994.

[59] GNU Project. GNU Binutils. http://www.gnu.org/software/binutils/ .

[60] GNU Project. GNU C Library. http://www.gnu.org/software/ libc/ .

[61] GNU Project. GNU Compiler Collection (GCC) Internals. http://gcc.gnu.org/onlinedocs/

gccint/ .

[62] D. Novillo. GCC Internals. http://www.airs.com/dnovillo/ , 2007.

[63] H. Singh et al. Enhanced Leakage Reduction Techniques using Intermediate Strength Power

Gating. IEEE Trans. Very Large Scale Integr. Syst., 15(11):1215–1224, 2007.

[64] J.E. Stine et. al. FreePDK v2.0: Transitioning VLSI Education Towards Nanometer Variation-

Aware Designs. In Microelectronic Systems Education, 2009. MSE ’09. IEEE International

Conference on, pages 100–103, 2009.

[65] Nangate. Nangate 45nm Open Cell Library. http://www.nangate.com/openlibrary, 2008.

[66] N. L. Binkert et al. The M5 Simulator: Modeling Networked Systems. IEEE Micro, 26(4):52–

60, 2006.

[67] A. J. KleinOsowski and D. J. Lilja. MinneSPEC: A New SPEC Benchmark Workload for

Simulation-Based Computer Architecture Research. IEEE Comput. Archit. Lett., 1(1):7, 2002.

119

www.manaraa.com

[68] J. Burns and J. L. Gaudiot. SMT Layout Overhead and Scalability. IEEE Trans. Parallel

Distrib. Syst., 13(2):142–155, 2002.

[69] Phoenix Technologies Ltd. Toshiba Corp. Hewlett-Packard Corp., Intel Corp. Microsoft Corp.

Advanced Configuration and Power Interface Specification, Revision 4.0a. http://www.acpi.

info/ , 2010.

120

www.manaraa.com

LIST OF PUBLICATIONS

• S. Roy, S. Katkoori, N. Ranganathan. A Compiler Based Leakage Reduction Technique by

Power-Gating Functional Units in Embedded Microprocessors. International Conference on

VLSI Design, January 2007, Page(s): 215 - 220.

• S. Roy, N. Ranganathan, S. Katkoori. Exploration of Compiler Optimization Techniques

for Enhancing Power Gating. International Symposium on Circuits and Systems, May 2009,

Page(s): 1004-1007.

• S. Roy, N. Ranganathan, S. Katkoori. Compiler Directed Power Gating in Embedded Micro-

processors. International Conference on Computer Design, October 2009, Page(s): 35-40.

• S. Roy, N. Ranganathan, S. Katkoori. A Framework for Power-Gating Functional Units in

Embedded Microprocessors. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, Volume 17, Issue 11, November 2009, Page(s): 1640-1649.

• S. Roy, N. Ranganathan, S. Katkoori. Impact of Compiler Optimization Techniques on Power

Gating for Leakage Reduction. IEEE Transactions on Computers, Revised manuscript under

review, 2010.

• S. Roy, N. Ranganathan, S. Katkoori. State-Retentive Power Gating of Register Files in

Multi-core Processors. IEEE Transactions on Computers, Under review, 2010.

121

www.manaraa.com

ABOUT THE AUTHOR

Soumyaroop Roy received his Bachelor of Engineering degree in Electronics and Communica-

tion Engineering in 2001 from Birla Institute of Technology, Mesra, Ranchi, India and his Master of

Science degree in Computer Engineering in 2006 from University of South Florida (USF), Tampa,

FL. He is currently pursuing his Doctoral degree in Computer Science and Engineering at USF

and has accepted a Senior Design Engineering position in the Architecture Performance Modeling

group at AMD, Austin, TX. His research interests are in architecture and compiler methodologies

for low-power design of microprocessors, architecture level performance and power modeling, and

low-power VLSI design. From 2001 to 2004, he was a Software Engineer with the NCVHDL group

at Cadence Design Systems India in Noida. He has taught several courses at the Computer Science

and Engineering Department at USF, including Operating Systems, Data Structures, Foundations of

Engineering, and Logic Design, and has served as a teaching assistant in numerous other courses.

He received a Provost’s Commendation for Outstanding Teaching by a Graduate Teaching Assistant

at USF in 2010 and the 2010 Sypris Best Teaching Assistant Award at the Department of Computer

Science and Engineering, USF. He is also a recipient of the 2009 IEEE Computer Society Richard

E. Merwin scholarship. He is a student member of the IEEE and the IEEE Computer Society.

	Architecture and Compiler Support for Leakage Reduction Using Power Gating in Microprocessors
	Scholar Commons Citation

	./policy.1.eps

